You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

davinci_model_unittest.cc 35 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #define private public
  18. #define protected public
  19. #include "graph/utils/graph_utils.h"
  20. #include "common/profiling/profiling_manager.h"
  21. #include "graph/load/model_manager/davinci_model.h"
  22. using namespace std;
  23. namespace ge {
  24. extern OpDescPtr CreateOpDesc(string name, string type);
  25. class DModelListener : public ModelListener {
  26. public:
  27. DModelListener(){};
  28. uint32_t OnComputeDone(uint32_t model_id, uint32_t data_index, uint32_t result, vector<OutputTensorInfo> &outputs) {
  29. return 0;
  30. }
  31. };
  32. shared_ptr<ModelListener> g_local_call_back(new DModelListener());
  33. class UtestDavinciModel : public testing::Test {
  34. protected:
  35. void SetUp() {}
  36. void TearDown() {}
  37. };
  38. int32_t MsprofReport(uint32_t moduleId, uint32_t type, void *data, uint32_t len) {
  39. return 0;
  40. }
  41. TEST_F(UtestDavinciModel, init_success) {
  42. DavinciModel model(0, nullptr);
  43. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  44. ProfilingManager::Instance().is_load_profiling_ = true;
  45. GeModelPtr ge_model = make_shared<GeModel>();
  46. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  47. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 10240);
  48. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  49. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  50. ge_model->SetModelTaskDef(model_task_def);
  51. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  52. TensorUtils::SetSize(tensor, 512);
  53. {
  54. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  55. op_desc->AddInputDesc(tensor);
  56. op_desc->AddOutputDesc(tensor);
  57. op_desc->SetInputOffset({1024});
  58. op_desc->SetOutputOffset({1024});
  59. NodePtr node = graph->AddNode(op_desc); // op_index = 0
  60. }
  61. {
  62. OpDescPtr op_desc = CreateOpDesc("square", "Square");
  63. op_desc->AddInputDesc(tensor);
  64. op_desc->AddOutputDesc(tensor);
  65. op_desc->SetInputOffset({1024});
  66. op_desc->SetOutputOffset({1024});
  67. NodePtr node = graph->AddNode(op_desc); // op_index = 1
  68. domi::TaskDef *task_def = model_task_def->add_task();
  69. task_def->set_stream_id(0);
  70. task_def->set_type(RT_MODEL_TASK_KERNEL);
  71. domi::KernelDef *kernel_def = task_def->mutable_kernel();
  72. kernel_def->set_stub_func("stub_func");
  73. kernel_def->set_args_size(64);
  74. string args(64, '1');
  75. kernel_def->set_args(args.data(), 64);
  76. domi::KernelContext *context = kernel_def->mutable_context();
  77. context->set_op_index(op_desc->GetId());
  78. context->set_kernel_type(2); // ccKernelType::TE
  79. uint16_t args_offset[9] = {0};
  80. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  81. }
  82. {
  83. OpDescPtr op_desc = CreateOpDesc("memcpy", MEMCPYASYNC);
  84. op_desc->AddInputDesc(tensor);
  85. op_desc->AddOutputDesc(tensor);
  86. op_desc->SetInputOffset({1024});
  87. op_desc->SetOutputOffset({5120});
  88. NodePtr node = graph->AddNode(op_desc); // op_index = 2
  89. domi::TaskDef *task_def = model_task_def->add_task();
  90. task_def->set_stream_id(0);
  91. task_def->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  92. domi::MemcpyAsyncDef *memcpy_async = task_def->mutable_memcpy_async();
  93. memcpy_async->set_src(1024);
  94. memcpy_async->set_dst(5120);
  95. memcpy_async->set_dst_max(512);
  96. memcpy_async->set_count(1);
  97. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  98. memcpy_async->set_op_index(op_desc->GetId());
  99. }
  100. {
  101. OpDescPtr op_desc = CreateOpDesc("output", NETOUTPUT);
  102. op_desc->AddInputDesc(tensor);
  103. op_desc->SetInputOffset({5120});
  104. op_desc->SetSrcName( { "memcpy" } );
  105. op_desc->SetSrcIndex( { 0 } );
  106. NodePtr node = graph->AddNode(op_desc); // op_index = 3
  107. }
  108. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  109. EXPECT_EQ(model.Init(), SUCCESS);
  110. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  111. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  112. EXPECT_EQ(model.task_list_.size(), 2);
  113. OutputData output_data;
  114. vector<OutputTensorInfo> outputs;
  115. EXPECT_EQ(model.GenOutputTensorInfo(&output_data, outputs), SUCCESS);
  116. EXPECT_EQ(output_data.blobs.size(), 1);
  117. EXPECT_EQ(outputs.size(), 1);
  118. ProfilingManager::Instance().is_load_profiling_ = false;
  119. }
  120. TEST_F(UtestDavinciModel, init_data_op) {
  121. DavinciModel model(0, nullptr);
  122. model.ge_model_ = make_shared<GeModel>();
  123. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  124. model.runtime_param_.mem_size = 5120000;
  125. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  126. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  127. TensorUtils::SetSize(tensor, 512);
  128. OpDescPtr op_input = CreateOpDesc("data", DATA);
  129. op_input->AddInputDesc(tensor);
  130. op_input->AddOutputDesc(tensor);
  131. op_input->SetInputOffset({1024});
  132. op_input->SetOutputOffset({1024});
  133. NodePtr node_input = graph->AddNode(op_input);
  134. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  135. op_output->AddInputDesc(tensor);
  136. op_output->SetInputOffset({1024});
  137. op_output->SetSrcName( { "data" } );
  138. op_output->SetSrcIndex( { 0 } );
  139. NodePtr node_output = graph->AddNode(op_output);
  140. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  141. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  142. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  143. EXPECT_EQ(model.op_list_.size(), 2);
  144. }
  145. TEST_F(UtestDavinciModel, init_data_op_subgraph) {
  146. DavinciModel model(0, nullptr);
  147. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  148. model.runtime_param_.mem_size = 5120000;
  149. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  150. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  151. TensorUtils::SetSize(tensor, 512);
  152. OpDescPtr op_input = CreateOpDesc("data", DATA);
  153. op_input->AddInputDesc(tensor);
  154. op_input->AddOutputDesc(tensor);
  155. op_input->SetInputOffset({1024});
  156. op_input->SetOutputOffset({1024});
  157. NodePtr node = graph->AddNode(op_input);
  158. uint32_t data_op_index = 0;
  159. map<uint32_t, OpDescPtr> data_by_index;
  160. set<const void *> input_outside_addrs;
  161. EXPECT_EQ(model.InitDataOp(nullptr, node, data_op_index, data_by_index, input_outside_addrs), SUCCESS);
  162. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  163. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  164. EXPECT_EQ(data_op_index, 0);
  165. EXPECT_TRUE(data_by_index.empty());
  166. }
  167. TEST_F(UtestDavinciModel, init_netoutput_op_subgraph) {
  168. DavinciModel model(0, nullptr);
  169. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  170. model.runtime_param_.mem_size = 5120000;
  171. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  172. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  173. TensorUtils::SetSize(tensor, 512);
  174. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  175. op_output->AddInputDesc(tensor);
  176. op_output->SetInputOffset({1024});
  177. op_output->SetSrcName( { "data" } );
  178. op_output->SetSrcIndex( { 0 } );
  179. NodePtr node = graph->AddNode(op_output);
  180. std::vector<OpDescPtr> output_op_list;
  181. set<const void *> output_outside_addrs;
  182. EXPECT_EQ(model.InitNetOutput(nullptr, node, output_op_list, output_outside_addrs), SUCCESS);
  183. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  184. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  185. EXPECT_TRUE(output_op_list.empty());
  186. }
  187. TEST_F(UtestDavinciModel, init_unknown) {
  188. DavinciModel model(0, nullptr);
  189. model.SetKnownNode(true);
  190. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  191. GeModelPtr ge_model = make_shared<GeModel>();
  192. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  193. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 5120000);
  194. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  195. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  196. ge_model->SetModelTaskDef(model_task_def);
  197. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  198. TensorUtils::SetSize(tensor, 512);
  199. OpDescPtr op_input = CreateOpDesc("data", DATA);
  200. op_input->AddInputDesc(tensor);
  201. op_input->AddOutputDesc(tensor);
  202. op_input->SetInputOffset({1024});
  203. op_input->SetOutputOffset({1024});
  204. NodePtr node_input = graph->AddNode(op_input); // op_index = 0
  205. OpDescPtr op_kernel = CreateOpDesc("square", "Square");
  206. op_kernel->AddInputDesc(tensor);
  207. op_kernel->AddOutputDesc(tensor);
  208. op_kernel->SetInputOffset({1024});
  209. op_kernel->SetOutputOffset({1024});
  210. NodePtr node_kernel = graph->AddNode(op_kernel); // op_index = 1
  211. OpDescPtr op_memcpy = CreateOpDesc("memcpy", MEMCPYASYNC);
  212. op_memcpy->AddInputDesc(tensor);
  213. op_memcpy->AddOutputDesc(tensor);
  214. op_memcpy->SetInputOffset({1024});
  215. op_memcpy->SetOutputOffset({5120});
  216. NodePtr node_memcpy = graph->AddNode(op_memcpy); // op_index = 2
  217. OpDescPtr op_output = CreateOpDesc("output", NETOUTPUT);
  218. op_output->AddInputDesc(tensor);
  219. op_output->SetInputOffset({5120});
  220. op_output->SetSrcName( { "memcpy" } );
  221. op_output->SetSrcIndex( { 0 } );
  222. NodePtr node_output = graph->AddNode(op_output); // op_index = 3
  223. domi::TaskDef *task_def1 = model_task_def->add_task();
  224. task_def1->set_stream_id(0);
  225. task_def1->set_type(RT_MODEL_TASK_KERNEL);
  226. domi::KernelDef *kernel_def = task_def1->mutable_kernel();
  227. kernel_def->set_stub_func("stub_func");
  228. kernel_def->set_args_size(64);
  229. string args(64, '1');
  230. kernel_def->set_args(args.data(), 64);
  231. domi::KernelContext *context = kernel_def->mutable_context();
  232. context->set_op_index(1);
  233. context->set_kernel_type(2); // ccKernelType::TE
  234. uint16_t args_offset[9] = {0};
  235. context->set_args_offset(args_offset, 9 * sizeof(uint16_t));
  236. domi::TaskDef *task_def2 = model_task_def->add_task();
  237. task_def2->set_stream_id(0);
  238. task_def2->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  239. domi::MemcpyAsyncDef *memcpy_async = task_def2->mutable_memcpy_async();
  240. memcpy_async->set_src(1024);
  241. memcpy_async->set_dst(5120);
  242. memcpy_async->set_dst_max(512);
  243. memcpy_async->set_count(1);
  244. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  245. memcpy_async->set_op_index(2);
  246. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  247. ProfilingManager::Instance().is_load_profiling_ = true;
  248. EXPECT_EQ(model.Init(), SUCCESS);
  249. ProfilingManager::Instance().is_load_profiling_ = false;
  250. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  251. EXPECT_EQ(model.output_addrs_list_.size(), 1);
  252. EXPECT_EQ(model.task_list_.size(), 2);
  253. EXPECT_EQ(model.task_list_[0]->UpdateArgs(), SUCCESS);
  254. EXPECT_EQ(model.task_list_[1]->UpdateArgs(), SUCCESS);
  255. vector<string> out_shape_info;
  256. model.GetModelAttr(out_shape_info);
  257. vector<InputOutputDescInfo> input_descs;
  258. vector<InputOutputDescInfo> output_descs;
  259. EXPECT_EQ(model.GetInputOutputDescInfo(input_descs, output_descs), SUCCESS);
  260. int32_t virtual_addr = 0;
  261. const vector<void *> inputs = { &virtual_addr };
  262. const vector<void *> outputs = { &virtual_addr };
  263. EXPECT_EQ(model.UpdateKnownNodeArgs(inputs, outputs), SUCCESS);
  264. }
  265. TEST_F(UtestDavinciModel, Init_variable_op) {
  266. DavinciModel model(0, g_local_call_back);
  267. model.ge_model_ = make_shared<GeModel>();
  268. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  269. model.runtime_param_.mem_size = 5120000;
  270. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  271. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  272. TensorUtils::SetSize(tensor, 512);
  273. OpDescPtr var1 = CreateOpDesc("var1", VARIABLE);
  274. var1->AddInputDesc(tensor);
  275. var1->AddOutputDesc(tensor);
  276. var1->SetInputOffset({1024});
  277. var1->SetOutputOffset({1024});
  278. AttrUtils::SetBool(var1, VAR_ATTR_VAR_IS_BROADCAST, true);
  279. graph->AddNode(var1);
  280. OpDescPtr var2 = CreateOpDesc(NODE_NAME_GLOBAL_STEP, VARIABLE);
  281. var2->AddInputDesc(tensor);
  282. var2->AddOutputDesc(tensor);
  283. var2->SetInputOffset({1024});
  284. var2->SetOutputOffset({1024});
  285. graph->AddNode(var2);
  286. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  287. EXPECT_EQ(model.ReturnNoOutput(1), SUCCESS);
  288. EXPECT_EQ(model.SyncVarData(), SUCCESS);
  289. OutputData output_data;
  290. EXPECT_FALSE(model.has_output_node_);
  291. EXPECT_EQ(model.CopyOutputData(1, output_data, RT_MEMCPY_DEVICE_TO_HOST), SUCCESS);
  292. EXPECT_EQ(model.ReturnResult(1, false, true, &output_data), INTERNAL_ERROR);
  293. }
  294. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ1) {
  295. DavinciModel model(0, nullptr);
  296. model.ge_model_ = make_shared<GeModel>();
  297. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  298. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  299. OpDescPtr op_output = CreateOpDesc("output_ascend_mbatch_batch_1", NETOUTPUT);
  300. op_output->AddInputDesc(tensor);
  301. op_output->SetInputOffset({1024});
  302. NodePtr node_output = graph->AddNode(op_output);
  303. EXPECT_EQ(model.InitRealSizeAndShapeInfo(graph, node_output), SUCCESS);
  304. }
  305. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ2) {
  306. DavinciModel model(0, nullptr);
  307. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  308. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  309. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  310. data1->AddInputDesc(shape_desc);
  311. data1->AddOutputDesc(shape_desc);
  312. NodePtr data1_node = graph->AddNode(data1);
  313. OpDescPtr case_node = CreateOpDesc("case1", CASE);
  314. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  315. case_node->AddInputDesc(tensor);
  316. case_node->AddOutputDesc(tensor);
  317. NodePtr case1_node = graph->AddNode(case_node);
  318. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  319. output->AddInputDesc(tensor);
  320. output->SetSrcName( { "case1" } );
  321. output->SetSrcIndex( { 0 } );
  322. NodePtr output_node = graph->AddNode(output);
  323. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), case1_node->GetInDataAnchor(0));
  324. GraphUtils::AddEdge(case1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  325. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1;2;4;8");
  326. (void)AttrUtils::SetBool(case_node, ATTR_INSERT_BY_MBATCH, true);
  327. model.is_getnext_sink_dynamic_ = false;
  328. model.is_online_infer_dynamic_ = true;
  329. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  330. // GetGearAndRealOutShapeInfo without ATTR_NAME_DYNAMIC_OUTPUT_DIMS
  331. EXPECT_EQ(ret, SUCCESS);
  332. vector<string> dynamic_output_dims = {"0,0,1,1,0,2,2,0,4,3,0,8"};
  333. (void)AttrUtils::SetListStr(output_node->GetOpDesc(), ATTR_NAME_DYNAMIC_OUTPUT_DIMS, dynamic_output_dims);
  334. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  335. EXPECT_EQ(ret, SUCCESS);
  336. }
  337. TEST_F(UtestDavinciModel, InitRealSizeAndShapeInfo_succ3) {
  338. DavinciModel model(0, nullptr);
  339. ComputeGraphPtr graph = std::make_shared<ComputeGraph>("test_graph");
  340. OpDescPtr data1 = CreateOpDesc("data1", DATA);
  341. GeTensorDesc shape_desc(GeShape({4,3,224,224}), FORMAT_NCHW, DT_FLOAT);
  342. data1->AddInputDesc(shape_desc);
  343. data1->AddOutputDesc(shape_desc);
  344. NodePtr data1_node = graph->AddNode(data1);
  345. OpDescPtr shape_node = CreateOpDesc("ascend_mbatch_get_dynamic_dims_node", GETDYNAMICDIMS);
  346. GeTensorDesc in_tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  347. GeTensorDesc out_tensor(GeShape({4,3}), FORMAT_NCHW, DT_FLOAT);
  348. shape_node->AddInputDesc(in_tensor);
  349. shape_node->AddOutputDesc(out_tensor);
  350. NodePtr get_dynamic_dims_node = graph->AddNode(shape_node);
  351. OpDescPtr output = CreateOpDesc("output1", NETOUTPUT);
  352. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  353. output->AddInputDesc(tensor);
  354. output->SetSrcName( { "data1", "ascend_mbatch_get_dynamic_dims_node" } );
  355. output->SetSrcIndex( { 0, 1 } );
  356. NodePtr output_node = graph->AddNode(output);
  357. GraphUtils::AddEdge(data1_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(0));
  358. GraphUtils::AddEdge(get_dynamic_dims_node->GetOutDataAnchor(0), output_node->GetInDataAnchor(1));
  359. (void)AttrUtils::SetStr(output_node->GetOpDesc(), ATTR_ALL_GEARS_INFO, "1,3;;4,3;,3");
  360. model.is_getnext_sink_dynamic_ = true;
  361. model.is_online_infer_dynamic_ = false;
  362. auto ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  363. EXPECT_EQ(ret, SUCCESS);
  364. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  365. model.runtime_param_.mem_size = 4;
  366. ret = model.InitRealSizeAndShapeInfo(graph, output_node);
  367. EXPECT_EQ(ret, SUCCESS);
  368. }
  369. TEST_F(UtestDavinciModel, init_data_aipp_info) {
  370. DavinciModel model(0, nullptr);
  371. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  372. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  373. model.runtime_param_.mem_size = 5120000;
  374. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  375. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  376. TensorUtils::SetSize(tensor, 512);
  377. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  378. op_desc->AddInputDesc(tensor);
  379. op_desc->AddOutputDesc(tensor);
  380. op_desc->SetInputOffset({1024});
  381. op_desc->SetOutputOffset({1024});
  382. NodePtr node = graph->AddNode(op_desc);
  383. GeAttrValue::NAMED_ATTRS aipp_attr;
  384. aipp_attr.SetAttr("aipp_mode", GeAttrValue::CreateFrom<GeAttrValue::INT>(domi::AippOpParams::dynamic));
  385. aipp_attr.SetAttr("related_input_rank", GeAttrValue::CreateFrom<GeAttrValue::INT>(0));
  386. aipp_attr.SetAttr("max_src_image_size", GeAttrValue::CreateFrom<GeAttrValue::INT>(2048));
  387. aipp_attr.SetAttr("support_rotation", GeAttrValue::CreateFrom<GeAttrValue::INT>(1));
  388. EXPECT_TRUE(AttrUtils::SetNamedAttrs(op_desc, ATTR_NAME_AIPP, aipp_attr));
  389. AippConfigInfo aipp_info;
  390. EXPECT_EQ(model.GetAippInfo(0, aipp_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  391. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  392. EXPECT_EQ(model.GetAippInfo(0, aipp_info), SUCCESS);
  393. EXPECT_EQ(aipp_info.aipp_mode, domi::AippOpParams::dynamic);
  394. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  395. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  396. EXPECT_EQ(model.op_list_.size(), 1);
  397. }
  398. TEST_F(UtestDavinciModel, init_data_aipp_static) {
  399. DavinciModel model(0, nullptr);
  400. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  401. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  402. model.runtime_param_.mem_size = 5120000;
  403. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  404. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  405. TensorUtils::SetSize(tensor, 512);
  406. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  407. op_desc->AddInputDesc(tensor);
  408. op_desc->AddOutputDesc(tensor);
  409. op_desc->SetInputOffset({1024});
  410. op_desc->SetOutputOffset({1024});
  411. NodePtr node = graph->AddNode(op_desc);
  412. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "static_aipp");
  413. InputAippType aipp_type;
  414. size_t aipp_index = 0;
  415. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  416. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  417. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  418. EXPECT_EQ(aipp_type, DATA_WITH_STATIC_AIPP);
  419. EXPECT_EQ(aipp_index, 0xFFFFFFFFu);
  420. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  421. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  422. EXPECT_EQ(model.op_list_.size(), 1);
  423. }
  424. TEST_F(UtestDavinciModel, init_data_aipp_dynamic) {
  425. DavinciModel model(0, nullptr);
  426. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  427. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  428. model.runtime_param_.mem_size = 5120000;
  429. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  430. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  431. TensorUtils::SetSize(tensor, 512);
  432. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  433. op_desc->AddInputDesc(tensor);
  434. op_desc->AddOutputDesc(tensor);
  435. op_desc->SetInputOffset({1024});
  436. op_desc->SetOutputOffset({1024});
  437. NodePtr node = graph->AddNode(op_desc); // op_index 0
  438. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  439. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  440. InputAippType aipp_type;
  441. size_t aipp_index = 0;
  442. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  443. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  444. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  445. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  446. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  447. EXPECT_EQ(model.op_list_.size(), 1);
  448. }
  449. TEST_F(UtestDavinciModel, init_data_aipp_releated) {
  450. DavinciModel model(0, nullptr);
  451. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  452. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  453. model.runtime_param_.mem_size = 5120000;
  454. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  455. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  456. TensorUtils::SetSize(tensor, 512);
  457. {
  458. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  459. op_desc->AddInputDesc(tensor);
  460. op_desc->AddOutputDesc(tensor);
  461. op_desc->SetInputOffset({1024});
  462. op_desc->SetOutputOffset({1024});
  463. NodePtr node = graph->AddNode(op_desc); // op_index 0
  464. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp");
  465. AttrUtils::SetStr(op_desc, ATTR_DATA_AIPP_DATA_NAME_MAP, "releated_aipp");
  466. }
  467. {
  468. OpDescPtr op_desc = CreateOpDesc("releated_aipp", DATA);
  469. op_desc->AddInputDesc(tensor);
  470. op_desc->AddOutputDesc(tensor);
  471. op_desc->SetInputOffset({1024});
  472. op_desc->SetOutputOffset({1024});
  473. NodePtr node = graph->AddNode(op_desc); // op_index 1
  474. }
  475. InputAippType aipp_type;
  476. size_t aipp_index = 0;
  477. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  478. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  479. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  480. EXPECT_EQ(aipp_type, DATA_WITH_DYNAMIC_AIPP);
  481. EXPECT_EQ(aipp_index, 1);
  482. EXPECT_EQ(model.input_addrs_list_.size(), 2);
  483. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  484. EXPECT_EQ(model.op_list_.size(), 2);
  485. }
  486. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_conf) {
  487. DavinciModel model(0, nullptr);
  488. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  489. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  490. model.runtime_param_.mem_size = 5120000;
  491. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  492. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  493. TensorUtils::SetSize(tensor, 512);
  494. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  495. op_desc->AddInputDesc(tensor);
  496. op_desc->AddOutputDesc(tensor);
  497. op_desc->SetInputOffset({1024});
  498. op_desc->SetOutputOffset({1024});
  499. NodePtr node = graph->AddNode(op_desc); // op_index 0
  500. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_conf");
  501. InputAippType aipp_type;
  502. size_t aipp_index = 0;
  503. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  504. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  505. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), SUCCESS);
  506. EXPECT_EQ(aipp_type, DYNAMIC_AIPP_NODE);
  507. EXPECT_EQ(aipp_index, 0xFFFFFFFFU);
  508. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  509. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  510. EXPECT_EQ(model.op_list_.size(), 1);
  511. }
  512. TEST_F(UtestDavinciModel, init_data_aipp_dynamic_invalid) {
  513. DavinciModel model(0, nullptr);
  514. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  515. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  516. model.runtime_param_.mem_size = 5120000;
  517. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  518. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  519. TensorUtils::SetSize(tensor, 512);
  520. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  521. op_desc->AddInputDesc(tensor);
  522. op_desc->AddOutputDesc(tensor);
  523. op_desc->SetInputOffset({1024});
  524. op_desc->SetOutputOffset({1024});
  525. NodePtr node = graph->AddNode(op_desc); // op_index 0
  526. AttrUtils::SetStr(op_desc, ATTR_DATA_RELATED_AIPP_MODE, "dynamic_aipp_invalid");
  527. InputAippType aipp_type;
  528. size_t aipp_index = 0;
  529. EXPECT_EQ(model.GetAippType(0, aipp_type, aipp_index), PARAM_INVALID);
  530. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  531. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  532. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  533. EXPECT_EQ(model.op_list_.size(), 1);
  534. }
  535. TEST_F(UtestDavinciModel, init_data_aipp_input_info_empty) {
  536. DavinciModel model(0, nullptr);
  537. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  538. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  539. model.runtime_param_.mem_size = 5120000;
  540. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  541. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  542. TensorUtils::SetSize(tensor, 512);
  543. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  544. op_desc->AddInputDesc(tensor);
  545. op_desc->AddOutputDesc(tensor);
  546. op_desc->SetInputOffset({1024});
  547. op_desc->SetOutputOffset({1024});
  548. NodePtr node = graph->AddNode(op_desc); // op_index 0
  549. vector<string> inputs = {};
  550. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  551. vector<string> outputs = {};
  552. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  553. OriginInputInfo orig_input_info;
  554. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  555. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  556. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  557. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  558. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  559. EXPECT_EQ(model.op_list_.size(), 1);
  560. }
  561. TEST_F(UtestDavinciModel, init_data_aipp_input_info_normal) {
  562. DavinciModel model(0, nullptr);
  563. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  564. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  565. model.runtime_param_.mem_size = 5120000;
  566. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  567. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  568. TensorUtils::SetSize(tensor, 512);
  569. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  570. op_desc->AddInputDesc(tensor);
  571. op_desc->AddOutputDesc(tensor);
  572. op_desc->SetInputOffset({1024});
  573. op_desc->SetOutputOffset({1024});
  574. NodePtr node = graph->AddNode(op_desc); // op_index 0
  575. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  576. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  577. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  578. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  579. OriginInputInfo orig_input_info;
  580. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  581. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  582. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), SUCCESS);
  583. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  584. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  585. EXPECT_EQ(model.op_list_.size(), 1);
  586. }
  587. TEST_F(UtestDavinciModel, init_data_aipp_input_info_invalid) {
  588. DavinciModel model(0, nullptr);
  589. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  590. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  591. model.runtime_param_.mem_size = 5120000;
  592. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  593. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  594. TensorUtils::SetSize(tensor, 512);
  595. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  596. op_desc->AddInputDesc(tensor);
  597. op_desc->AddOutputDesc(tensor);
  598. op_desc->SetInputOffset({1024});
  599. op_desc->SetOutputOffset({1024});
  600. NodePtr node = graph->AddNode(op_desc); // op_index 0
  601. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName" }; // Invalid
  602. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  603. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  604. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  605. OriginInputInfo orig_input_info;
  606. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  607. EXPECT_EQ(model.InitNodes(graph), ACL_ERROR_GE_AIPP_MODE_INVALID);
  608. EXPECT_EQ(model.GetOrigInputInfo(0, orig_input_info), ACL_ERROR_GE_AIPP_NOT_EXIST);
  609. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  610. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  611. EXPECT_EQ(model.op_list_.size(), 1);
  612. }
  613. TEST_F(UtestDavinciModel, init_data_aipp_input_dims_normal) {
  614. DavinciModel model(0, nullptr);
  615. model.ge_model_ = make_shared<GeModel>(); // for CustAICPUKernelStore::GetCustAICPUKernelStore()
  616. model.runtime_param_.mem_base = (uint8_t *)0x08000000;
  617. model.runtime_param_.mem_size = 5120000;
  618. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  619. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  620. TensorUtils::SetSize(tensor, 512);
  621. OpDescPtr op_desc = CreateOpDesc("data", DATA);
  622. op_desc->AddInputDesc(tensor);
  623. op_desc->AddOutputDesc(tensor);
  624. op_desc->SetInputOffset({1024});
  625. op_desc->SetOutputOffset({1024});
  626. NodePtr node = graph->AddNode(op_desc); // op_index 0
  627. vector<string> inputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  628. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_INPUTS, inputs);
  629. vector<string> outputs = { "NCHW:DT_FLOAT:TensorName:TensorSize:3:1,2,8" };
  630. AttrUtils::SetListStr(op_desc, ATTR_NAME_AIPP_OUTPUTS, outputs);
  631. vector<InputOutputDims> input_dims;
  632. vector<InputOutputDims> output_dims;
  633. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), ACL_ERROR_GE_AIPP_NOT_EXIST);
  634. EXPECT_EQ(model.InitNodes(graph), SUCCESS);
  635. EXPECT_EQ(model.GetAllAippInputOutputDims(0, input_dims, output_dims), SUCCESS);
  636. EXPECT_EQ(input_dims.size(), 1);
  637. EXPECT_EQ(output_dims.size(), 1);
  638. EXPECT_EQ(model.input_addrs_list_.size(), 1);
  639. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  640. EXPECT_EQ(model.op_list_.size(), 1);
  641. }
  642. // test label_set_task Init
  643. TEST_F(UtestDavinciModel, label_task_success) {
  644. DavinciModel model(0, nullptr);
  645. ComputeGraphPtr graph = make_shared<ComputeGraph>("default");
  646. GeModelPtr ge_model = make_shared<GeModel>();
  647. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  648. AttrUtils::SetInt(ge_model, ATTR_MODEL_MEMORY_SIZE, 10240);
  649. AttrUtils::SetInt(ge_model, ATTR_MODEL_STREAM_NUM, 1);
  650. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  651. ge_model->SetModelTaskDef(model_task_def);
  652. GeTensorDesc tensor(GeShape(), FORMAT_ND, DT_INT32);
  653. TensorUtils::SetSize(tensor, 64);
  654. {
  655. OpDescPtr op_desc = CreateOpDesc("label_switch", LABELSWITCHBYINDEX);
  656. op_desc->AddInputDesc(tensor);
  657. op_desc->SetInputOffset({1024});
  658. NodePtr node = graph->AddNode(op_desc); // op_index = 0
  659. EXPECT_TRUE(AttrUtils::SetListInt(op_desc, ATTR_NAME_LABEL_SWITCH_LIST, {0, 1}));
  660. domi::TaskDef *task_def1 = model_task_def->add_task();
  661. task_def1->set_stream_id(0);
  662. task_def1->set_type(RT_MODEL_TASK_STREAM_LABEL_SWITCH_BY_INDEX);
  663. domi::LabelSwitchByIndexDef *label_task_def = task_def1->mutable_label_switch_by_index();
  664. label_task_def->set_op_index(op_desc->GetId());
  665. label_task_def->set_label_max(2);
  666. }
  667. {
  668. OpDescPtr op_desc = CreateOpDesc("label_then", LABELSET);
  669. NodePtr node = graph->AddNode(op_desc); // op_index = 1
  670. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 1));
  671. domi::TaskDef *task_def1 = model_task_def->add_task();
  672. task_def1->set_stream_id(0);
  673. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  674. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  675. label_task_def->set_op_index(op_desc->GetId());
  676. }
  677. {
  678. OpDescPtr op_desc = CreateOpDesc("label_goto", LABELGOTOEX);
  679. NodePtr node = graph->AddNode(op_desc); // op_index = 2
  680. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
  681. domi::TaskDef *task_def2 = model_task_def->add_task();
  682. task_def2->set_stream_id(0);
  683. task_def2->set_type(RT_MODEL_TASK_STREAM_LABEL_GOTO);
  684. domi::LabelGotoExDef *label_task_def = task_def2->mutable_label_goto_ex();
  685. label_task_def->set_op_index(op_desc->GetId());
  686. }
  687. {
  688. OpDescPtr op_desc = CreateOpDesc("label_else", LABELSET);
  689. NodePtr node = graph->AddNode(op_desc); // op_index = 3
  690. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 0));
  691. domi::TaskDef *task_def1 = model_task_def->add_task();
  692. task_def1->set_stream_id(0);
  693. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  694. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  695. label_task_def->set_op_index(op_desc->GetId());
  696. }
  697. {
  698. OpDescPtr op_desc = CreateOpDesc("label_leave", LABELSET);
  699. NodePtr node = graph->AddNode(op_desc); // op_index = 4
  700. EXPECT_TRUE(AttrUtils::SetInt(op_desc, ATTR_NAME_LABEL_SWITCH_INDEX, 2));
  701. domi::TaskDef *task_def1 = model_task_def->add_task();
  702. task_def1->set_stream_id(0);
  703. task_def1->set_type(RT_MODEL_TASK_LABEL_SET);
  704. domi::LabelSetDef *label_task_def = task_def1->mutable_label_set();
  705. label_task_def->set_op_index(op_desc->GetId());
  706. }
  707. EXPECT_TRUE(AttrUtils::SetInt(ge_model, ATTR_MODEL_LABEL_NUM, 3));
  708. EXPECT_EQ(model.Assign(ge_model), SUCCESS);
  709. EXPECT_EQ(model.Init(), SUCCESS);
  710. EXPECT_EQ(model.input_addrs_list_.size(), 0);
  711. EXPECT_EQ(model.output_addrs_list_.size(), 0);
  712. EXPECT_EQ(model.task_list_.size(), 5);
  713. }
  714. TEST_F(UtestDavinciModel, LoadWithQueue_fail_with_diff_args) {
  715. DavinciModel model(0, nullptr);
  716. model.ge_model_ = make_shared<GeModel>();
  717. model.input_queue_ids_.emplace_back(0);
  718. EXPECT_EQ(model.LoadWithQueue(), ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID);
  719. EXPECT_EQ(model.input_data_info_.size(), 0);
  720. ZeroCopyOffset zero_copy_offset;
  721. model.input_data_info_[0] = zero_copy_offset;
  722. model.output_queue_ids_.emplace_back(0);
  723. EXPECT_EQ(model.LoadWithQueue(), ACL_ERROR_GE_EXEC_MODEL_QUEUE_ID_INVALID);
  724. EXPECT_EQ(model.output_data_info_.size(), 0);
  725. model.output_data_info_[0] = zero_copy_offset;
  726. EXPECT_EQ(model.LoadWithQueue(), INTERNAL_ERROR);
  727. EXPECT_EQ(model.active_stream_list_.size(), 0);
  728. }
  729. TEST_F(UtestDavinciModel, Sink_model_profile) {
  730. ProfilingManager::Instance().prof_cb_.msprofReporterCallback = MsprofReport;
  731. ProfileInfo profile;
  732. profile.fusion_info.op_name = "relu";
  733. DavinciModel model(0, nullptr);
  734. model.profile_list_.emplace_back(profile);
  735. std::map<std::string, std::pair<uint32_t, uint32_t>> op_info;
  736. op_info["relu"] = std::pair<uint32_t, uint32_t>(1, 1);
  737. model.profiler_report_op_info_ = op_info;
  738. model.SinkModelProfile();
  739. }
  740. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示