You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

single_op_model_unittest.cc 10 kB

5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #include <vector>
  18. #define protected public
  19. #define private public
  20. #include "graph/load/model_manager/model_utils.h"
  21. #include "graph/utils/graph_utils.h"
  22. #include "runtime/rt.h"
  23. #include "single_op/single_op_model.h"
  24. #include "single_op/task/tbe_task_builder.h"
  25. #include "single_op/task/rts_kernel_task_builder.h"
  26. #include "single_op/task/op_task.h"
  27. #include "framework/common/helper/model_helper.h"
  28. #include "single_op/single_op.h"
  29. #include "single_op/stream_resource.h"
  30. #include "graph/passes/graph_builder_utils.h"
  31. #undef private
  32. #undef protected
  33. using namespace std;
  34. using namespace testing;
  35. using namespace ge;
  36. namespace {
  37. constexpr char const *kAttrSupportDynamicShape = "support_dynamicshape";
  38. } // namespace
  39. class UtestSingleOpModel : public testing::Test {
  40. protected:
  41. void SetUp() {}
  42. void TearDown() {}
  43. };
  44. //rt api stub
  45. rtError_t rtGetTaskIdAndStreamID(uint32_t *taskId, uint32_t *streamId) {
  46. return RT_ERROR_NONE;
  47. }
  48. /*
  49. TEST_F(UtestSingleOpModel, test_init_model) {
  50. string model_data_str = "123456789";
  51. SingleOpModel model("model", model_data_str.c_str(), model_data_str.size());
  52. ASSERT_EQ(model.InitModel(), FAILED);
  53. }
  54. void ParseOpModelParamsMock(ModelHelper &model_helper, SingleOpModelParam &param) {}
  55. TEST_F(UtestSingleOpModel, test_parse_input_node) {
  56. string model_data_str = "123456789";
  57. SingleOpModel model("model", model_data_str.c_str(), model_data_str.size());
  58. auto op_desc = make_shared<OpDesc>("Data", "Data");
  59. ASSERT_EQ(model.ParseInputNode(op_desc), PARAM_INVALID);
  60. vector<int64_t> shape{1, 2, 3, 4};
  61. vector<int64_t> offsets{16};
  62. GeShape ge_shape(shape);
  63. GeTensorDesc desc(ge_shape);
  64. op_desc->AddOutputDesc(desc);
  65. op_desc->SetOutputOffset(offsets);
  66. ASSERT_EQ(model.ParseInputNode(op_desc), SUCCESS);
  67. op_desc->AddOutputDesc(desc);
  68. offsets.push_back(32);
  69. op_desc->SetOutputOffset(offsets);
  70. ASSERT_EQ(model.ParseInputNode(op_desc), PARAM_INVALID);
  71. }
  72. */
  73. TEST_F(UtestSingleOpModel, test_parse_output_node) {
  74. string model_data_str = "123456789";
  75. SingleOpModel model("model", model_data_str.c_str(), model_data_str.size());
  76. auto op_desc = make_shared<OpDesc>("NetOutput", "NetOutput");
  77. vector<int64_t> shape{1, 2, 3, 4};
  78. vector<int64_t> offsets{16};
  79. GeShape ge_shape(shape);
  80. GeTensorDesc desc(ge_shape);
  81. op_desc->AddInputDesc(desc);
  82. op_desc->SetInputOffset(offsets);
  83. op_desc->AddOutputDesc(desc);
  84. op_desc->SetOutputOffset(offsets);
  85. ASSERT_NO_THROW(model.ParseOutputNode(op_desc));
  86. ASSERT_NO_THROW(model.ParseOutputNode(op_desc));
  87. }
  88. TEST_F(UtestSingleOpModel, test_set_inputs_and_outputs) {
  89. string model_data_str = "123456789";
  90. SingleOpModel model("model", model_data_str.c_str(), model_data_str.size());
  91. model.input_offset_list_.push_back(0);
  92. model.input_sizes_.push_back(16);
  93. model.output_offset_list_.push_back(0);
  94. model.output_sizes_.push_back(16);
  95. std::mutex stream_mu_;
  96. rtStream_t stream_ = nullptr;
  97. // SingleOp single_op(&stream_mu_, stream_);
  98. //
  99. // ASSERT_EQ(model.SetInputsAndOutputs(single_op), SUCCESS);
  100. }
  101. /*
  102. TEST_F(UtestSingleOpModel, test_build_kernel_task) {
  103. string model_data_str = "123456789";
  104. SingleOpModel model("model", model_data_str.c_str(), model_data_str.size());
  105. model.input_offset_list_.push_back(0);
  106. model.input_sizes_.push_back(16);
  107. model.output_offset_list_.push_back(0);
  108. model.output_sizes_.push_back(16);
  109. auto graph = make_shared<ComputeGraph>("graph");
  110. auto op_desc = make_shared<OpDesc>("AddN", "AddN");
  111. vector<int64_t> shape{16, 16};
  112. GeShape ge_shape(shape);
  113. GeTensorDesc desc(ge_shape);
  114. op_desc->AddInputDesc(desc);
  115. op_desc->AddOutputDesc(desc);
  116. auto node = graph->AddNode(op_desc);
  117. std::mutex stream_mu_;
  118. rtStream_t stream_ = nullptr;
  119. SingleOp single_op(&stream_mu_, stream_);
  120. domi::KernelDef kernel_def;
  121. kernel_def.mutable_context()->set_kernel_type(cce::ccKernelType::TE);
  122. TbeOpTask *task = nullptr;
  123. ASSERT_EQ(model.BuildKernelTask(kernel_def, &task), UNSUPPORTED);
  124. kernel_def.mutable_context()->set_kernel_type(cce::ccKernelType::TE);
  125. ASSERT_EQ(model.BuildKernelTask(kernel_def, &task), INTERNAL_ERROR);
  126. model.op_list_[0] = node;
  127. ASSERT_EQ(model.BuildKernelTask(kernel_def, &task), PARAM_INVALID);
  128. ASSERT_EQ(task, nullptr);
  129. delete task;
  130. }
  131. TEST_F(UtestSingleOpModel, test_init) {
  132. string model_data_str = "123456789";
  133. SingleOpModel op_model("model", model_data_str.c_str(), model_data_str.size());
  134. ASSERT_EQ(op_model.Init(), FAILED);
  135. }
  136. */
  137. /*
  138. TEST_F(UtestSingleOpModel, test_parse_arg_table) {
  139. string model_data_str = "123456789";
  140. SingleOpModel op_model("model", model_data_str.c_str(), model_data_str.size());
  141. TbeOpTask task;
  142. OpDescPtr op_desc;
  143. std::mutex stream_mu_;
  144. rtStream_t stream_ = nullptr;
  145. SingleOp op(&stream_mu_, stream_);
  146. op.arg_table_.resize(2);
  147. auto args = std::unique_ptr<uint8_t[]>(new uint8_t[sizeof(uintptr_t) * 2]);
  148. auto *arg_base = (uintptr_t*)args.get();
  149. arg_base[0] = 0x100000;
  150. arg_base[1] = 0x200000;
  151. task.SetKernelArgs(std::move(args), 16, 1, op_desc);
  152. op_model.model_params_.addr_mapping_[0x100000] = 1;
  153. op_model.ParseArgTable(&task, op);
  154. ASSERT_EQ(op.arg_table_[0].size(), 0);
  155. ASSERT_EQ(op.arg_table_[1].size(), 1);
  156. ASSERT_EQ(op.arg_table_[1].front(), &arg_base[0]);
  157. }
  158. */
  159. TEST_F(UtestSingleOpModel, test_op_task_get_profiler_args) {
  160. string name = "relu";
  161. string type = "relu";
  162. auto op_desc = std::make_shared<ge::OpDesc>(name, type);
  163. op_desc->SetStreamId(0);
  164. op_desc->SetId(0);
  165. TbeOpTask task;
  166. task.op_desc_ = op_desc;
  167. task.model_name_ = "resnet_50";
  168. task.model_id_ = 1;
  169. TaskDescInfo task_desc_info;
  170. uint32_t model_id;
  171. task.GetProfilingArgs(task_desc_info, model_id);
  172. ASSERT_EQ(task_desc_info.model_name, "resnet_50");
  173. ASSERT_EQ(model_id, 1);
  174. }
  175. TEST_F(UtestSingleOpModel, test_build_dynamic_op) {
  176. string model_data_str = "123456789";
  177. SingleOpModel model("model", model_data_str.c_str(), model_data_str.size());
  178. model.netoutput_op_ = make_shared<OpDesc>("NetOutput", "NetOutput");
  179. model.model_helper_.model_ = ge::MakeShared<ge::GeModel>();
  180. // make graph
  181. ut::GraphBuilder builder = ut::GraphBuilder("graph");
  182. auto data = builder.AddNode("Data", "Data", 0, 1);
  183. auto transdata = builder.AddNode("Transdata", "Transdata", 1, 1);
  184. auto netoutput = builder.AddNode("Netoutput", "NetOutput", 1, 0);
  185. builder.AddDataEdge(data, 0, transdata, 0);
  186. builder.AddDataEdge(transdata, 0, netoutput, 0);
  187. auto compute_graph = builder.GetGraph();
  188. auto graph = GraphUtils::CreateGraphFromComputeGraph(compute_graph);
  189. model.model_helper_.model_->SetGraph(graph);
  190. auto op_desc = transdata->GetOpDesc();
  191. op_desc->input_name_idx_["Data"] = 0;
  192. const vector<string> depend_names = { "Data" };
  193. op_desc->SetOpInferDepends(depend_names);
  194. (void)AttrUtils::SetBool(op_desc, kAttrSupportDynamicShape, true);
  195. auto tensor = std::make_shared<GeTensor>();
  196. auto data_desc = data->GetOpDesc();
  197. auto tensor_desc = data_desc->MutableInputDesc(0);
  198. AttrUtils::SetTensor(tensor_desc, "_value", tensor);
  199. // set task_def
  200. auto model_task_def = make_shared<domi::ModelTaskDef>();
  201. domi::TaskDef *task_def = model_task_def->add_task();
  202. task_def->set_type(RT_MODEL_TASK_KERNEL);
  203. domi::KernelDef *kernel_def = task_def->mutable_kernel();
  204. domi::KernelContext *context = kernel_def->mutable_context();
  205. context->set_kernel_type(2); // ccKernelType::TE
  206. model.model_helper_.model_->SetModelTaskDef(model_task_def);
  207. std::mutex stream_mu_;
  208. DynamicSingleOp dynamic_single_op(0, &stream_mu_, nullptr);
  209. StreamResource res((uintptr_t)1);
  210. model.BuildDynamicOp(res, dynamic_single_op);
  211. }
  212. TEST_F(UtestSingleOpModel, test_host_mem) {
  213. string model_data_str = "123456789";
  214. SingleOpModel model("model", model_data_str.c_str(), model_data_str.size());
  215. // make graph
  216. ut::GraphBuilder builder = ut::GraphBuilder("graph");
  217. auto data = builder.AddNode("Data", "Data", 0, 1);
  218. auto netoutput = builder.AddNode("Netoutput", "NetOutput", 1, 0);
  219. builder.AddDataEdge(data, 0, netoutput, 0);
  220. auto graph = builder.GetGraph();
  221. model.op_with_hostmem_[0] = data;
  222. std::mutex stream_mu_;
  223. DynamicSingleOp single_op(0, &stream_mu_, nullptr);
  224. ASSERT_EQ(model.SetHostMemTensor(single_op), SUCCESS);
  225. }
  226. TEST_F(UtestSingleOpModel, BuildTaskList) {
  227. ComputeGraphPtr graph = make_shared<ComputeGraph>("single_op");
  228. GeModelPtr ge_model = make_shared<GeModel>();
  229. ge_model->SetGraph(GraphUtils::CreateGraphFromComputeGraph(graph));
  230. shared_ptr<domi::ModelTaskDef> model_task_def = make_shared<domi::ModelTaskDef>();
  231. ge_model->SetModelTaskDef(model_task_def);
  232. NodePtr node = nullptr;
  233. {
  234. auto op_desc = std::make_shared<ge::OpDesc>("memcpy", MEMCPYASYNC);
  235. GeTensorDesc tensor(GeShape(), FORMAT_NCHW, DT_FLOAT);
  236. op_desc->AddInputDesc(tensor);
  237. op_desc->AddOutputDesc(tensor);
  238. op_desc->SetInputOffset({0});
  239. op_desc->SetOutputOffset({0});
  240. node = graph->AddNode(op_desc);
  241. domi::TaskDef *task_def = model_task_def->add_task();
  242. task_def->set_stream_id(0);
  243. task_def->set_type(RT_MODEL_TASK_MEMCPY_ASYNC);
  244. domi::MemcpyAsyncDef *memcpy_async = task_def->mutable_memcpy_async();
  245. memcpy_async->set_src(0);
  246. memcpy_async->set_dst(0);
  247. memcpy_async->set_dst_max(512);
  248. memcpy_async->set_count(1);
  249. memcpy_async->set_kind(RT_MEMCPY_DEVICE_TO_DEVICE);
  250. memcpy_async->set_op_index(0);
  251. }
  252. string model_data_str = "123456789";
  253. SingleOpModel model("model", model_data_str.c_str(), model_data_str.size());
  254. StreamResource *res = new (std::nothrow) StreamResource(1);
  255. std::mutex stream_mu;
  256. rtStream_t stream = nullptr;
  257. rtStreamCreate(&stream, 0);
  258. SingleOp single_op(res, &stream_mu, stream);
  259. model.model_helper_.model_ = ge_model;
  260. model.op_list_.emplace(0, node);
  261. ASSERT_EQ(model.BuildTaskList(res, single_op), SUCCESS);
  262. MemcpyAsyncTask mem_task;
  263. ASSERT_EQ(mem_task.LaunchKernel(0), SUCCESS);
  264. }

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示