You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

single_op_model.cc 28 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "single_op/single_op_model.h"
  17. #include <atomic>
  18. #include <memory>
  19. #include <string>
  20. #include <vector>
  21. #include "framework/common/debug/ge_log.h"
  22. #include "graph/debug/ge_attr_define.h"
  23. #include "graph/load/model_manager/model_utils.h"
  24. #include "graph/utils/attr_utils.h"
  25. #include "graph/utils/graph_utils.h"
  26. #include "graph/utils/tensor_utils.h"
  27. #include "runtime/rt.h"
  28. #include "task/aicpu_task_builder.h"
  29. #include "task/aicpu_kernel_task_builder.h"
  30. #include "task/tbe_task_builder.h"
  31. #include "hybrid/executor/hybrid_model_executor.h"
  32. #include "hybrid/node_executor/node_executor.h"
  33. static std::atomic<std::uint64_t> aicpu_kernel_id(0);
  34. using domi::TaskDef;
  35. using std::unique_ptr;
  36. using std::vector;
  37. namespace ge {
  38. namespace {
  39. const size_t kDataOutputNum = 1;
  40. const uint32_t kOutputIndexOfData = 0;
  41. constexpr char const *kAttrSupportDynamicShape = "support_dynamicshape";
  42. Status IfInferDepend(GeModelPtr &ge_model, bool &flag) {
  43. auto comp_graph = GraphUtils::GetComputeGraph(ge_model->GetGraph());
  44. GE_CHECK_NOTNULL(comp_graph);
  45. for (const auto &node : comp_graph->GetAllNodes()) {
  46. auto op_desc = node->GetOpDesc();
  47. GE_CHECK_NOTNULL(op_desc);
  48. const auto &depends = op_desc->GetOpInferDepends();
  49. bool support_dynamic_shape = false;
  50. (void)AttrUtils::GetBool(op_desc, kAttrSupportDynamicShape, support_dynamic_shape);
  51. if (!depends.empty() && support_dynamic_shape) {
  52. flag = true;
  53. return SUCCESS;
  54. }
  55. }
  56. return SUCCESS;
  57. }
  58. Status NeedHybridModel(GeModelPtr &ge_model, bool &flag) {
  59. bool infer_depend_flag = false;
  60. GE_CHK_STATUS_RET(IfInferDepend(ge_model, infer_depend_flag), "[Check][InferDepend] failed.");
  61. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  62. int32_t kernel_task_num = 0;
  63. for (int i = 0; i < tasks.size(); ++i) {
  64. auto task_type = static_cast<rtModelTaskType_t>(tasks[i].type());
  65. if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) {
  66. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? tasks[i].kernel().context() :
  67. tasks[i].kernel_with_handle().context();
  68. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  69. if (kernel_type == ccKernelType::TE) {
  70. if (infer_depend_flag) {
  71. flag = true;
  72. return SUCCESS;
  73. }
  74. kernel_task_num++;
  75. if (kernel_task_num > 1) {
  76. flag = true;
  77. return SUCCESS;
  78. }
  79. }
  80. }
  81. }
  82. return SUCCESS;
  83. }
  84. } // namespace
  85. SingleOpModel::SingleOpModel(const std::string &model_name, const void *model_data, uint32_t model_size)
  86. : model_name_(model_name), ori_model_data_(model_data), ori_model_size_(model_size) {}
  87. Status SingleOpModel::Init() {
  88. GE_CHK_STATUS_RET_NOLOG(InitModel());
  89. return LoadAllNodes();
  90. }
  91. Status SingleOpModel::InitModel() {
  92. ge::ModelData model;
  93. model.model_len = ori_model_size_;
  94. model.model_data = const_cast<void *>(ori_model_data_);
  95. auto ret = model_helper_.LoadModel(model);
  96. if (ret != SUCCESS) {
  97. GELOGE(ret, "[Load][Model] failed.");
  98. REPORT_CALL_ERROR("E19999", "InitModel fail for ModelHelper LoadModel failed.");
  99. return ret;
  100. }
  101. return SUCCESS;
  102. }
  103. void SingleOpModel::ParseOpModelParams(ModelHelper &model_helper, SingleOpModelParam &param) {
  104. int64_t value = 0;
  105. bool ret = false;
  106. std::shared_ptr<ge::GeModel> model = model_helper.GetGeModel();
  107. GE_CHECK_NOTNULL_JUST_RETURN(model);
  108. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_MEMORY_SIZE, value);
  109. param.memory_size = ret ? static_cast<uint64_t>(value) : 0;
  110. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_ZERO_COPY_MEMORY_SIZE, value);
  111. param.zero_copy_mem_size = ret ? static_cast<uint64_t>(value) : 0;
  112. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_WEIGHT_SIZE, value);
  113. param.weight_size = ret ? static_cast<uint64_t>(value) : 0;
  114. ret = ge::AttrUtils::GetInt(model, MODEL_ATTR_TASK_GEN_BASE_ADDR, value);
  115. param.base_addr = ret ? static_cast<uint64_t>(value) : 0;
  116. ret = ge::AttrUtils::GetInt(model, MODEL_ATTR_TASK_GEN_WEIGHT_ADDR, value);
  117. param.weight_addr = ret ? static_cast<uint64_t>(value) : 0;
  118. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_CORE_TYPE, value);
  119. param.core_type = ret ? value : 0;
  120. GELOGI("ParseOpModelParams(), total_memory_size:%lu, zero_copy_size:%lu, weight_size:%lu, core_type = %lu",
  121. param.memory_size, param.zero_copy_mem_size, param.weight_size, param.core_type);
  122. }
  123. Status SingleOpModel::InitModelMem(StreamResource &res) {
  124. ParseOpModelParams(model_helper_, model_params_);
  125. if (model_params_.memory_size > model_params_.zero_copy_mem_size) {
  126. const string purpose("malloc feature map memory on model execute.");
  127. GELOGI("total memory: %lu, zero_copy_mem: %lu", model_params_.memory_size, model_params_.zero_copy_mem_size);
  128. model_params_.mem_base =
  129. res.MallocMemory(purpose, model_params_.memory_size - model_params_.zero_copy_mem_size, false);
  130. if (model_params_.mem_base == nullptr) {
  131. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  132. }
  133. }
  134. if (model_params_.weight_size > 0 && has_weight_) {
  135. const string purpose("malloc weights memory on model execute.");
  136. model_params_.weight_base = res.MallocWeight(purpose, model_params_.weight_size);
  137. if (model_params_.weight_base == nullptr) {
  138. // no need to free memory, for that was handled by StreamResources
  139. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  140. }
  141. auto weight_buffer = model_helper_.GetGeModel()->GetWeight();
  142. GELOGI("To copy weight to device. weight size = %zu", weight_buffer.GetSize());
  143. GE_CHK_RT_RET(rtMemcpy(model_params_.weight_base,
  144. model_params_.weight_size,
  145. weight_buffer.GetData(),
  146. weight_buffer.GetSize(),
  147. RT_MEMCPY_HOST_TO_DEVICE));
  148. }
  149. return SUCCESS;
  150. }
  151. Status SingleOpModel::ParseInputNode(const OpDescPtr &op_desc) {
  152. vector<int64_t> offsets = op_desc->GetOutputOffset();
  153. if (offsets.size() != kDataOutputNum) {
  154. GELOGE(ACL_ERROR_GE_PARAM_INVALID,
  155. "[Parse][InputNode]Data op should have only one output, but got %zu, op_name:%s, op_type:%s.",
  156. op_desc->GetOutputOffset().size(), op_desc->GetName().c_str(), op_desc->GetType().c_str());
  157. REPORT_INNER_ERROR("E19999", "ParseInputNode fail for Data op should have only one output, but got %zu,"
  158. "op_name:%s, op_type:%s.", op_desc->GetOutputOffset().size(),
  159. op_desc->GetName().c_str(), op_desc->GetType().c_str());
  160. return ACL_ERROR_GE_PARAM_INVALID;
  161. }
  162. auto output_desc = op_desc->GetOutputDescPtr(0);
  163. GE_CHECK_NOTNULL(output_desc);
  164. int64_t tensor_size = 0;
  165. (void)TensorUtils::GetSize(*output_desc, tensor_size);
  166. input_offset_list_.emplace_back(offsets[0]);
  167. input_sizes_.emplace_back(tensor_size);
  168. GELOGI("[%s] parse input node: %s, size = %ld, offset = %u", model_name_.c_str(), op_desc->GetName().c_str(),
  169. tensor_size, static_cast<uint32_t>(offsets[0]));
  170. return SUCCESS;
  171. }
  172. void SingleOpModel::ParseOutputNode(const OpDescPtr &op_desc) {
  173. vector<int64_t> offsets = op_desc->GetInputOffset();
  174. for (uint32_t k = 0; k < static_cast<uint32_t>(offsets.size()); ++k) {
  175. auto input_desc = op_desc->GetInputDescPtr(k);
  176. if (input_desc == nullptr) {
  177. continue;
  178. }
  179. int64_t tensor_size = 0;
  180. (void)TensorUtils::GetSize(*input_desc, tensor_size);
  181. output_offset_list_.emplace_back(offsets[k]);
  182. output_sizes_.emplace_back(tensor_size);
  183. GELOGI("[%s] parse output node: %s, size = %ld, offset = %u", model_name_.c_str(), op_desc->GetName().c_str(),
  184. tensor_size, static_cast<uint32_t>(offsets[k]));
  185. }
  186. }
  187. Status SingleOpModel::LoadAllNodes() {
  188. auto ge_model = model_helper_.GetGeModel();
  189. GE_CHECK_NOTNULL(ge_model);
  190. Graph graph = ge_model->GetGraph();
  191. model_id_ = ge_model->GetModelId();
  192. auto compute_graph = GraphUtils::GetComputeGraph(graph);
  193. if (compute_graph == nullptr) {
  194. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Get][ComputeGraph] fail, model_name:%s.", model_name_.c_str());
  195. REPORT_CALL_ERROR("E19999", "LoadAllNodes fail for GetComputeGraph return nullptr, model_name:%s.",
  196. model_name_.c_str());
  197. return ACL_ERROR_GE_INTERNAL_ERROR;
  198. }
  199. auto nodes = compute_graph->GetDirectNode();
  200. size_t model_op_size = nodes.size();
  201. GELOGI("[%s] node size = %zu", model_name_.c_str(), model_op_size);
  202. for (size_t i = 0; i < model_op_size; ++i) {
  203. auto node = nodes.at(i);
  204. auto op_desc = node->GetOpDesc();
  205. GE_CHECK_NOTNULL(op_desc);
  206. op_list_[op_desc->GetId()] = node;
  207. auto op_type = op_desc->GetType();
  208. GELOGI("[%s] node[%zu] = %s, type = %s", model_name_.c_str(), i, node->GetName().c_str(), op_type.c_str());
  209. if (op_type == DATA_TYPE || op_type == AIPP_DATA_TYPE) {
  210. data_ops_.emplace_back(op_desc);
  211. continue;
  212. }
  213. if (op_type == CONSTANT || op_type == CONSTANTOP) {
  214. has_weight_ = true;
  215. continue;
  216. }
  217. if (op_type == NETOUTPUT) {
  218. netoutput_op_ = op_desc;
  219. continue;
  220. }
  221. ge_model->GetTBEKernelStore().LoadTBEKernelBinToOpDesc(op_desc);
  222. ge_model->GetCustAICPUKernelStore().LoadCustAICPUKernelBinToOpDesc(op_desc);
  223. }
  224. return SUCCESS;
  225. }
  226. Status SingleOpModel::ParseInputsAndOutputs() {
  227. for (auto &op_desc : data_ops_) {
  228. GE_CHK_STATUS_RET_NOLOG(ParseInputNode(op_desc));
  229. }
  230. ParseOutputNode(netoutput_op_);
  231. return SUCCESS;
  232. }
  233. Status SingleOpModel::SetInputsAndOutputs(SingleOp &single_op) {
  234. int arg_index = 0;
  235. for (size_t i = 0; i < input_offset_list_.size(); ++i) {
  236. auto *addr = model_params_.mem_base + input_offset_list_[i];
  237. model_params_.addr_mapping_.emplace(reinterpret_cast<uintptr_t>(addr), arg_index++);
  238. single_op.input_sizes_.emplace_back(input_sizes_[i]);
  239. single_op.input_addr_list_.emplace_back(addr);
  240. }
  241. for (size_t i = 0; i < output_offset_list_.size(); ++i) {
  242. auto *addr = model_params_.mem_base + output_offset_list_[i];
  243. model_params_.addr_mapping_.emplace(reinterpret_cast<uintptr_t>(addr), arg_index++);
  244. single_op.output_sizes_.emplace_back(output_sizes_[i]);
  245. single_op.output_addr_list_.emplace_back(addr);
  246. }
  247. single_op.args_.resize(arg_index);
  248. return SUCCESS;
  249. }
  250. Status SingleOpModel::BuildTaskList(StreamResource *stream_resource, SingleOp &single_op) {
  251. auto ge_model = model_helper_.GetGeModel();
  252. GE_CHECK_NOTNULL(ge_model);
  253. single_op.arg_table_.resize(single_op.input_sizes_.size() + single_op.output_sizes_.size());
  254. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  255. for (int i = 0; i < tasks.size(); ++i) {
  256. const TaskDef &task_def = tasks[i];
  257. GELOGI("[%s] Task[%d], type = %u, DebugString = %s", model_name_.c_str(), i, task_def.type(),
  258. task_def.DebugString().c_str());
  259. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  260. if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) {
  261. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  262. task_def.kernel_with_handle().context();
  263. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  264. if (kernel_type == ccKernelType::TE) {
  265. GELOGD("Building TBE task");
  266. TbeOpTask *tbe_task = nullptr;
  267. auto ret = BuildKernelTask(task_def, &tbe_task);
  268. if (ret != SUCCESS) {
  269. return ret;
  270. }
  271. ParseArgTable(tbe_task, single_op);
  272. tbe_task->SetModelArgs(model_name_, model_id_);
  273. if (tbe_task->tiling_buffer_ != nullptr) {
  274. tbe_task->stream_resource_ = stream_resource;
  275. }
  276. single_op.tasks_.emplace_back(tbe_task);
  277. } else if (kernel_type == ccKernelType::AI_CPU || kernel_type == ccKernelType::CUST_AI_CPU) {
  278. GELOGD("Building AICPU_CC task");
  279. OpTask *task = nullptr;
  280. uint64_t singleop_kernel_id = aicpu_kernel_id++;
  281. GELOGI("Build singleOp CCTask, kernel_id = %lu", singleop_kernel_id);
  282. auto ret = BuildCpuKernelTask(task_def.kernel(), &task, singleop_kernel_id);
  283. if (ret != SUCCESS) {
  284. return ret;
  285. }
  286. task->SetModelArgs(model_name_, model_id_);
  287. ParseArgTable(task, single_op);
  288. single_op.tasks_.emplace_back(task);
  289. } else {
  290. GELOGE(ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID,
  291. "[Check][KernelType]Only TBE, AI_CPU, CUST_AI_CPU kernel are supported, but got %u",
  292. context.kernel_type());
  293. REPORT_INNER_ERROR("E19999",
  294. "BuildTaskList fail for %u not supported, Only TBE, AI_CPU, CUST_AI_CPU kernel are supported.",
  295. context.kernel_type());
  296. return ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID;
  297. }
  298. } else if (task_type == RT_MODEL_TASK_KERNEL_EX) {
  299. GELOGD("Building AICPU_TF task");
  300. AiCpuTask *aicpu_task = nullptr;
  301. bool depend_compute_flag = false;
  302. uint64_t singleop_kernel_id = aicpu_kernel_id++;
  303. GELOGI("Build singleOp TfTask, kernel_id = %lu", singleop_kernel_id);
  304. auto ret = BuildKernelExTask(task_def.kernel_ex(), &aicpu_task, false, depend_compute_flag, singleop_kernel_id);
  305. if (ret != SUCCESS) {
  306. return ret;
  307. }
  308. aicpu_task->SetModelArgs(model_name_, model_id_);
  309. ParseArgTable(aicpu_task, single_op);
  310. single_op.tasks_.emplace_back(aicpu_task);
  311. } else {
  312. // skip
  313. GELOGD("Skip task type: %d", static_cast<int>(task_type));
  314. }
  315. }
  316. return SUCCESS;
  317. }
  318. void SingleOpModel::ParseArgTable(OpTask *task, SingleOp &op) {
  319. if (task == nullptr) {
  320. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Parse][ArgTable] fail for input OpTask is nullptr.");
  321. REPORT_INNER_ERROR("E19999", "ParseArgTable fail for input OpTask is nullptr.");
  322. return;
  323. }
  324. // args: addr1, addr2, addr3 ...
  325. uintptr_t *arg_base = nullptr;
  326. size_t arg_num = 0;
  327. task->GetIoAddr(arg_base, arg_num);
  328. for (size_t i = 0; i < arg_num; ++i) {
  329. uintptr_t *ptr_to_addr = arg_base + i;
  330. uintptr_t addr = *ptr_to_addr;
  331. auto iter = model_params_.addr_mapping_.find(addr);
  332. if (iter != model_params_.addr_mapping_.end()) {
  333. int arg_index = iter->second;
  334. GELOGI("%s args[%zu] mapped to user designated args[%d]", task->GetOpdesc()->GetName().c_str(), i, arg_index);
  335. op.arg_table_[iter->second].emplace_back(ptr_to_addr);
  336. }
  337. }
  338. }
  339. Status SingleOpModel::BuildKernelTask(const domi::TaskDef &task_def, TbeOpTask **task) {
  340. GE_CHECK_NOTNULL(task);
  341. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  342. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  343. task_def.kernel_with_handle().context();
  344. auto iter = op_list_.find(context.op_index());
  345. if (iter == op_list_.end()) {
  346. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Check][Param:TaskDef]op desc not found. op index = %u", context.op_index());
  347. REPORT_INNER_ERROR("E19999", "BuildKernelTask fail for op desc not found. op index = %u", context.op_index());
  348. return ACL_ERROR_GE_INTERNAL_ERROR;
  349. }
  350. auto *tbe_task = new (std::nothrow) TbeOpTask();
  351. if (tbe_task == nullptr) {
  352. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Create][TbeOpTask]failed.");
  353. REPORT_INNER_ERROR("E19999", "BuildKernelTask fail for new TbeOpTask.");
  354. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  355. }
  356. auto builder = TbeTaskBuilder(model_name_, iter->second, task_def);
  357. auto ret = builder.BuildTask(*tbe_task, model_params_);
  358. if (ret != SUCCESS) {
  359. delete tbe_task;
  360. tbe_task = nullptr;
  361. return ret;
  362. }
  363. *task = tbe_task;
  364. return SUCCESS;
  365. }
  366. Status SingleOpModel::BuildKernelExTask(const domi::KernelExDef &kernel_def, AiCpuTask **task,
  367. bool dynamic_flag, bool& depend_compute_flag, uint64_t kernel_id) {
  368. auto iter = op_list_.find(kernel_def.op_index());
  369. if (iter == op_list_.end()) {
  370. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR,
  371. "[Check][Param:KernelExDef]op not found. op index = %u", kernel_def.op_index());
  372. REPORT_INNER_ERROR("E19999",
  373. "BuildKernelExTask fail for param kernel_def, because op of kernel_def not found, op index:%u.",
  374. kernel_def.op_index());
  375. return ACL_ERROR_GE_INTERNAL_ERROR;
  376. }
  377. std::unique_ptr<AiCpuTask> aicpu_task(new (std::nothrow) AiCpuTask());
  378. if (aicpu_task == nullptr) {
  379. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Create][AiCpuTask] failed.");
  380. REPORT_INNER_ERROR("E19999", "BuildKernelExTask fail for new AiCpuTask, model_name:%s.", model_name_.c_str());
  381. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  382. }
  383. auto builder = AiCpuTaskBuilder(iter->second->GetOpDesc(), kernel_def);
  384. auto ret = builder.BuildTask(*aicpu_task, model_params_, dynamic_flag, kernel_id);
  385. if (ret != SUCCESS) {
  386. GELOGE(ret, "[Build][Task] failed, kernel_id:%lu.", kernel_id);
  387. return ret;
  388. }
  389. depend_compute_flag = (aicpu_task->GetUnknownType() == DEPEND_COMPUTE);
  390. *task = aicpu_task.release();
  391. return SUCCESS;
  392. }
  393. Status SingleOpModel::BuildCpuKernelTask(const domi::KernelDef &kernel_def, OpTask **task, uint64_t kernel_id) {
  394. const auto &context = kernel_def.context();
  395. auto iter = op_list_.find(context.op_index());
  396. if (iter == op_list_.end()) {
  397. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR,
  398. "[Check][Param:KernelDef] op desc not found. op index = %u", context.op_index());
  399. REPORT_INNER_ERROR("E19999",
  400. "BuildCpuKernelTask fail for kernel_def is invalid, because op of kernel_def not found, op index:%u.",
  401. context.op_index());
  402. return ACL_ERROR_GE_INTERNAL_ERROR;
  403. }
  404. std::unique_ptr<AiCpuCCTask> aicpucc_task(new (std::nothrow) AiCpuCCTask());
  405. if (aicpucc_task == nullptr) {
  406. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Create][AiCpuCCTask] failed");
  407. REPORT_INNER_ERROR("E19999", "BuildCpuKernelTask fail for new AiCpuCCTask, model_name:%s.", model_name_.c_str());
  408. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  409. }
  410. auto builder = AiCpuCCTaskBuilder(iter->second->GetOpDesc(), kernel_def);
  411. auto ret = builder.BuildTask(*aicpucc_task, kernel_id, model_params_);
  412. if (ret != SUCCESS) {
  413. GELOGE(ret, "[Build][AiCpuCCTask]failed, kernel_id:%lu.", kernel_id);
  414. REPORT_CALL_ERROR("E19999", "BuildCpuKernelTask fail for build AiCpuTask, kernel_id:%lu.", kernel_id);
  415. return ret;
  416. }
  417. *task = aicpucc_task.release();
  418. return SUCCESS;
  419. }
  420. Status SingleOpModel::InitHybridModelExecutor(const StreamResource &resource, const GeModelPtr &ge_model,
  421. SingleOp &single_op) {
  422. for (const auto &op_desc : data_ops_) {
  423. auto output_tensor_desc = op_desc->GetOutputDesc(kOutputIndexOfData);
  424. GeTensorDesc tensor_desc(output_tensor_desc);
  425. single_op.inputs_desc_.emplace_back(tensor_desc);
  426. GELOGD("Init inputs desc from %s.", op_desc->GetName().c_str());
  427. }
  428. GE_CHK_STATUS_RET_NOLOG(hybrid::NodeExecutorManager::GetInstance().EnsureInitialized());
  429. auto root_model = model_helper_.GetGeRootModel();
  430. GE_CHECK_NOTNULL(root_model);
  431. root_model->SetRootGraph(GraphUtils::GetComputeGraph(ge_model->GetGraph()));
  432. root_model->SetSubgraphInstanceNameToModel(root_model->GetRootGraph()->GetName(), ge_model);
  433. single_op.hybrid_model_.reset(new (std::nothrow)hybrid::HybridModel(root_model));
  434. GE_CHECK_NOTNULL(single_op.hybrid_model_);
  435. GE_CHK_STATUS_RET(single_op.hybrid_model_->Init(true), "[Init][HybridModel]Failed.");
  436. int32_t device_id = 0;
  437. GE_CHK_RT_RET(rtGetDevice(&device_id));
  438. single_op.hybrid_model_executor_.reset(new (std::nothrow)hybrid::HybridModelExecutor(single_op.hybrid_model_.get(),
  439. device_id,
  440. resource.GetStream()));
  441. GE_CHECK_NOTNULL(single_op.hybrid_model_executor_);
  442. GE_CHK_STATUS_RET(single_op.hybrid_model_executor_->Init(), "[Init][HybridModelExecutor]Failed.");
  443. return SUCCESS;
  444. }
  445. Status SingleOpModel::BuildOp(StreamResource &resource, SingleOp &single_op) {
  446. GE_CHK_STATUS_RET_NOLOG(ParseInputsAndOutputs());
  447. GE_CHK_STATUS_RET_NOLOG(InitModelMem(resource));
  448. single_op.running_param_.reset(new (std::nothrow)SingleOpModelParam(model_params_));
  449. GE_CHECK_NOTNULL(single_op.running_param_);
  450. GE_CHK_STATUS_RET_NOLOG(SetInputsAndOutputs(single_op));
  451. auto ge_model = model_helper_.GetGeModel();
  452. GE_CHECK_NOTNULL(ge_model);
  453. bool infer_depend_flag = false;
  454. GE_CHK_STATUS_RET(IfInferDepend(ge_model, infer_depend_flag), "[Check][InferDepend] failed.");
  455. if (infer_depend_flag) {
  456. // construct single_op, do single op with HybridModelExecutor
  457. GELOGD("Init hybrid model params of single op, and will do execute with hybrid model executor.");
  458. return InitHybridModelExecutor(resource, ge_model, single_op);
  459. }
  460. return BuildTaskList(&resource, single_op);
  461. }
  462. Status SingleOpModel::BuildModelTaskKernel(StreamResource *stream_resource, const TaskDef &task_def,
  463. DynamicSingleOp &single_op) {
  464. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  465. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  466. task_def.kernel_with_handle().context();
  467. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  468. if (kernel_type == ccKernelType::TE) {
  469. GELOGD("Building TBE task.");
  470. TbeOpTask *tbe_task = nullptr;
  471. GE_CHK_STATUS_RET_NOLOG(BuildKernelTask(task_def, &tbe_task));
  472. tbe_task->SetModelArgs(model_name_, model_id_);
  473. if (tbe_task->tiling_buffer_ != nullptr) {
  474. GELOGD("tiling buffer is not nullptr.");
  475. tbe_task->stream_resource_ = stream_resource;
  476. }
  477. single_op.op_task_.reset(tbe_task);
  478. } else if (kernel_type == ccKernelType::AI_CPU || kernel_type == ccKernelType::CUST_AI_CPU) {
  479. GELOGD("Building AICPU_CC task");
  480. OpTask *task = nullptr;
  481. uint64_t dynamic_singleop_kernel_id = aicpu_kernel_id++;
  482. GELOGI("Build dynamic singleOp CCTask, kernel_id = %lu", dynamic_singleop_kernel_id);
  483. GE_CHK_STATUS_RET_NOLOG(BuildCpuKernelTask(task_def.kernel(), &task, dynamic_singleop_kernel_id));
  484. task->SetModelArgs(model_name_, model_id_);
  485. single_op.op_task_.reset(task);
  486. } else {
  487. GELOGE(ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID,
  488. "[Check][Param:TaskDef]Only TBE, AI_CPU, CUST_AI_CPU kernel are supported, but got %u",
  489. context.kernel_type());
  490. REPORT_INNER_ERROR("E19999",
  491. "BuildModelTaskKernel fail for got:%u not supported, Only TBE, AI_CPU, CUST_AI_CPU kernel are supported.",
  492. context.kernel_type());
  493. return ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID;
  494. }
  495. return SUCCESS;
  496. }
  497. Status SingleOpModel::BuildTaskListForDynamicOp(StreamResource *stream_resource, DynamicSingleOp &single_op) {
  498. auto ge_model = model_helper_.GetGeModel();
  499. GE_CHECK_NOTNULL(ge_model);
  500. auto compute_graph = GraphUtils::GetComputeGraph(ge_model->GetGraph());
  501. GE_CHECK_NOTNULL(compute_graph);
  502. single_op.compute_graph_ = compute_graph;
  503. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  504. for (int i = 0; i < tasks.size(); ++i) {
  505. const TaskDef &task_def = tasks[i];
  506. GELOGI("[%s] Task[%d], type = [%u], DebugString = [%s]", model_name_.c_str(), i, task_def.type(),
  507. task_def.DebugString().c_str());
  508. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  509. if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) {
  510. if (single_op.op_task_ != nullptr) {
  511. GELOGE(ACL_ERROR_GE_OP_TASK_TYPE_INVALID, "[Check][TaskType]Do not support dynamic op with multiple tasks.");
  512. REPORT_INNER_ERROR("E19999",
  513. "BuildTaskListForDynamicOp fail for Do not support dynamic op with multiple tasks.");
  514. return ACL_ERROR_GE_OP_TASK_TYPE_INVALID;
  515. }
  516. GE_CHK_STATUS_RET_NOLOG(BuildModelTaskKernel(stream_resource, task_def, single_op));
  517. } else if (task_type == RT_MODEL_TASK_KERNEL_EX) {
  518. if (single_op.op_task_ != nullptr) {
  519. GELOGE(ACL_ERROR_GE_OP_TASK_TYPE_INVALID, "[Check][TaskType]Do not support dynamic op with multiple tasks.");
  520. REPORT_INNER_ERROR("E19999",
  521. "BuildTaskListForDynamicOp fail for Do not support dynamic op with multiple tasks.");
  522. return ACL_ERROR_GE_OP_TASK_TYPE_INVALID;
  523. }
  524. GELOGD("Building AICPU_TF task");
  525. AiCpuTask *aicpu_task = nullptr;
  526. bool depend_compute_flag = false;
  527. uint64_t dynamic_singleop_kernel_id = aicpu_kernel_id++;
  528. GELOGI("Build dynamic singleOp TfTask, kernel_id = %lu", dynamic_singleop_kernel_id);
  529. GE_CHK_STATUS_RET_NOLOG(BuildKernelExTask(task_def.kernel_ex(), &aicpu_task, true,
  530. depend_compute_flag, dynamic_singleop_kernel_id));
  531. if (depend_compute_flag) {
  532. if (i >= tasks.size() - 1) {
  533. GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Check][Task]The copy task of the fourth operator was not found.");
  534. REPORT_INNER_ERROR("E19999", "The copy task of the fourth operator was not found.");
  535. return ACL_ERROR_GE_PARAM_INVALID;
  536. }
  537. ++i;
  538. const TaskDef &copy_task_def = tasks[i];
  539. GE_CHK_STATUS_RET_NOLOG(aicpu_task->SetMemCopyTask(copy_task_def.kernel_ex()));
  540. }
  541. aicpu_task->SetModelArgs(model_name_, model_id_);
  542. single_op.op_task_.reset(aicpu_task);
  543. } else {
  544. // skip
  545. GELOGD("Skip task type: %d", static_cast<int>(task_type));
  546. }
  547. }
  548. return SUCCESS;
  549. }
  550. Status SingleOpModel::BuildDynamicOp(StreamResource &resource, DynamicSingleOp &single_op) {
  551. single_op.num_inputs_ = data_ops_.size();
  552. single_op.num_outputs_ = netoutput_op_->GetAllInputsSize();
  553. GE_CHK_STATUS_RET_NOLOG(InitModelMem(resource));
  554. model_params_.memory_size = UINT_MAX;
  555. model_params_.graph_is_dynamic = true;
  556. auto ge_model = model_helper_.GetGeModel();
  557. GE_CHECK_NOTNULL(ge_model);
  558. bool need_hybrid_model = false;
  559. GE_CHK_STATUS_RET(NeedHybridModel(ge_model, need_hybrid_model), "[Check][NeedHybridModel] failed.");
  560. if (need_hybrid_model) {
  561. GELOGD("Build single op HybridModel.");
  562. GE_CHK_STATUS_RET_NOLOG(hybrid::NodeExecutorManager::GetInstance().EnsureInitialized());
  563. auto root_model = model_helper_.GetGeRootModel();
  564. GE_CHECK_NOTNULL(root_model);
  565. root_model->SetRootGraph(GraphUtils::GetComputeGraph(ge_model->GetGraph()));
  566. root_model->SetSubgraphInstanceNameToModel(root_model->GetRootGraph()->GetName(), ge_model);
  567. single_op.hybrid_model_.reset(new (std::nothrow)hybrid::HybridModel(root_model));
  568. GE_CHECK_NOTNULL(single_op.hybrid_model_);
  569. GE_CHK_STATUS_RET(single_op.hybrid_model_->Init(true), "[Init][HybridModel]Failed.");
  570. int32_t device_id = 0;
  571. GE_CHK_RT_RET(rtGetDevice(&device_id));
  572. single_op.hybrid_model_executor_.reset(new (std::nothrow)hybrid::HybridModelExecutor(single_op.hybrid_model_.get(),
  573. device_id,
  574. resource.GetStream()));
  575. GE_CHECK_NOTNULL(single_op.hybrid_model_executor_);
  576. GE_CHK_STATUS_RET(single_op.hybrid_model_executor_->Init(), "[Init][HybridModelExecutor]Failed.");
  577. return SUCCESS;
  578. }
  579. return BuildTaskListForDynamicOp(&resource, single_op);
  580. }
  581. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示