You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

single_op_model.cc 30 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "single_op/single_op_model.h"
  17. #include <atomic>
  18. #include <memory>
  19. #include <string>
  20. #include <vector>
  21. #include "framework/common/debug/ge_log.h"
  22. #include "graph/debug/ge_attr_define.h"
  23. #include "graph/load/model_manager/model_utils.h"
  24. #include "graph/utils/attr_utils.h"
  25. #include "graph/utils/graph_utils.h"
  26. #include "graph/utils/tensor_utils.h"
  27. #include "runtime/rt.h"
  28. #include "task/aicpu_task_builder.h"
  29. #include "task/aicpu_kernel_task_builder.h"
  30. #include "task/tbe_task_builder.h"
  31. #include "hybrid/executor/hybrid_model_executor.h"
  32. #include "hybrid/node_executor/node_executor.h"
  33. static std::atomic<std::uint64_t> aicpu_kernel_id(0);
  34. using domi::TaskDef;
  35. using std::unique_ptr;
  36. using std::vector;
  37. namespace ge {
  38. namespace {
  39. const size_t kDataOutputNum = 1;
  40. const uint32_t kOutputIndexOfData = 0;
  41. constexpr char const *kAttrSupportDynamicShape = "support_dynamicshape";
  42. Status IfInferDepend(GeModelPtr &ge_model, bool &flag) {
  43. auto comp_graph = GraphUtils::GetComputeGraph(ge_model->GetGraph());
  44. GE_CHECK_NOTNULL(comp_graph);
  45. for (const auto &node : comp_graph->GetAllNodes()) {
  46. auto op_desc = node->GetOpDesc();
  47. GE_CHECK_NOTNULL(op_desc);
  48. const auto &depends = op_desc->GetOpInferDepends();
  49. bool support_dynamic_shape = false;
  50. (void)AttrUtils::GetBool(op_desc, kAttrSupportDynamicShape, support_dynamic_shape);
  51. if (!depends.empty() && support_dynamic_shape) {
  52. flag = true;
  53. return SUCCESS;
  54. }
  55. }
  56. return SUCCESS;
  57. }
  58. Status NeedHybridModel(GeModelPtr &ge_model, bool &flag) {
  59. bool infer_depend_flag = false;
  60. GE_CHK_STATUS_RET(IfInferDepend(ge_model, infer_depend_flag), "[Check][InferDepend] failed.");
  61. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  62. int32_t kernel_task_num = 0;
  63. for (int i = 0; i < tasks.size(); ++i) {
  64. auto task_type = static_cast<rtModelTaskType_t>(tasks[i].type());
  65. if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) {
  66. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? tasks[i].kernel().context() :
  67. tasks[i].kernel_with_handle().context();
  68. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  69. if (kernel_type == ccKernelType::TE) {
  70. if (infer_depend_flag) {
  71. flag = true;
  72. return SUCCESS;
  73. }
  74. kernel_task_num++;
  75. if (kernel_task_num > 1) {
  76. flag = true;
  77. return SUCCESS;
  78. }
  79. }
  80. }
  81. }
  82. return SUCCESS;
  83. }
  84. } // namespace
  85. SingleOpModel::SingleOpModel(const std::string &model_name, const void *model_data, uint32_t model_size)
  86. : model_name_(model_name), ori_model_data_(model_data), ori_model_size_(model_size) {}
  87. Status SingleOpModel::Init() {
  88. GE_CHK_STATUS_RET_NOLOG(InitModel());
  89. return LoadAllNodes();
  90. }
  91. Status SingleOpModel::InitModel() {
  92. ge::ModelData model;
  93. model.model_len = ori_model_size_;
  94. model.model_data = const_cast<void *>(ori_model_data_);
  95. auto ret = model_helper_.LoadModel(model);
  96. if (ret != SUCCESS) {
  97. GELOGE(ret, "[Load][Model] failed.");
  98. REPORT_CALL_ERROR("E19999", "InitModel fail for ModelHelper LoadModel failed.");
  99. return ret;
  100. }
  101. return SUCCESS;
  102. }
  103. void SingleOpModel::ParseOpModelParams(ModelHelper &model_helper, SingleOpModelParam &param) {
  104. int64_t value = 0;
  105. bool ret = false;
  106. std::shared_ptr<ge::GeModel> model = model_helper.GetGeModel();
  107. GE_CHECK_NOTNULL_JUST_RETURN(model);
  108. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_MEMORY_SIZE, value);
  109. param.memory_size = ret ? static_cast<uint64_t>(value) : 0;
  110. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_ZERO_COPY_MEMORY_SIZE, value);
  111. param.zero_copy_mem_size = ret ? static_cast<uint64_t>(value) : 0;
  112. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_WEIGHT_SIZE, value);
  113. param.weight_size = ret ? static_cast<uint64_t>(value) : 0;
  114. ret = ge::AttrUtils::GetInt(model, MODEL_ATTR_TASK_GEN_BASE_ADDR, value);
  115. param.base_addr = ret ? static_cast<uint64_t>(value) : 0;
  116. ret = ge::AttrUtils::GetInt(model, MODEL_ATTR_TASK_GEN_WEIGHT_ADDR, value);
  117. param.weight_addr = ret ? static_cast<uint64_t>(value) : 0;
  118. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_CORE_TYPE, value);
  119. param.core_type = ret ? value : 0;
  120. GELOGI("ParseOpModelParams(), total_memory_size:%lu, zero_copy_size:%lu, weight_size:%lu, core_type = %lu",
  121. param.memory_size, param.zero_copy_mem_size, param.weight_size, param.core_type);
  122. }
  123. Status SingleOpModel::InitModelMem(StreamResource &res) {
  124. ParseOpModelParams(model_helper_, model_params_);
  125. if (model_params_.memory_size > model_params_.zero_copy_mem_size) {
  126. const string purpose("malloc feature map memory on model execute.");
  127. GELOGI("total memory: %lu, zero_copy_mem: %lu", model_params_.memory_size, model_params_.zero_copy_mem_size);
  128. model_params_.mem_base =
  129. res.MallocMemory(purpose, model_params_.memory_size - model_params_.zero_copy_mem_size, false);
  130. if (model_params_.mem_base == nullptr) {
  131. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  132. }
  133. }
  134. if (model_params_.weight_size > 0 && has_weight_) {
  135. const string purpose("malloc weights memory on model execute.");
  136. model_params_.weight_base = res.MallocWeight(purpose, model_params_.weight_size);
  137. if (model_params_.weight_base == nullptr) {
  138. // no need to free memory, for that was handled by StreamResources
  139. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  140. }
  141. auto weight_buffer = model_helper_.GetGeModel()->GetWeight();
  142. GELOGI("To copy weight to device. weight size = %zu", weight_buffer.GetSize());
  143. GE_CHK_RT_RET(rtMemcpy(model_params_.weight_base,
  144. model_params_.weight_size,
  145. weight_buffer.GetData(),
  146. weight_buffer.GetSize(),
  147. RT_MEMCPY_HOST_TO_DEVICE));
  148. }
  149. return SUCCESS;
  150. }
  151. Status SingleOpModel::ParseInputNode(const OpDescPtr &op_desc) {
  152. vector<int64_t> offsets = op_desc->GetOutputOffset();
  153. if (offsets.size() != kDataOutputNum) {
  154. GELOGE(ACL_ERROR_GE_PARAM_INVALID,
  155. "[Parse][InputNode]Data op should have only one output, but got %zu, op_name:%s, op_type:%s.",
  156. op_desc->GetOutputOffset().size(), op_desc->GetName().c_str(), op_desc->GetType().c_str());
  157. REPORT_INNER_ERROR("E19999", "ParseInputNode fail for Data op should have only one output, but got %zu,"
  158. "op_name:%s, op_type:%s.", op_desc->GetOutputOffset().size(),
  159. op_desc->GetName().c_str(), op_desc->GetType().c_str());
  160. return ACL_ERROR_GE_PARAM_INVALID;
  161. }
  162. auto output_desc = op_desc->GetOutputDescPtr(0);
  163. GE_CHECK_NOTNULL(output_desc);
  164. int64_t tensor_size = 0;
  165. (void)TensorUtils::GetSize(*output_desc, tensor_size);
  166. input_offset_list_.emplace_back(offsets[0]);
  167. input_sizes_.emplace_back(tensor_size);
  168. GELOGI("[%s] parse input node: %s, size = %ld, offset = %u", model_name_.c_str(), op_desc->GetName().c_str(),
  169. tensor_size, static_cast<uint32_t>(offsets[0]));
  170. return SUCCESS;
  171. }
  172. void SingleOpModel::ParseOutputNode(const OpDescPtr &op_desc) {
  173. vector<int64_t> offsets = op_desc->GetInputOffset();
  174. for (uint32_t k = 0; k < static_cast<uint32_t>(offsets.size()); ++k) {
  175. auto input_desc = op_desc->GetInputDescPtr(k);
  176. if (input_desc == nullptr) {
  177. continue;
  178. }
  179. int64_t tensor_size = 0;
  180. (void)TensorUtils::GetSize(*input_desc, tensor_size);
  181. output_offset_list_.emplace_back(offsets[k]);
  182. output_sizes_.emplace_back(tensor_size);
  183. GELOGI("[%s] parse output node: %s, size = %ld, offset = %u", model_name_.c_str(), op_desc->GetName().c_str(),
  184. tensor_size, static_cast<uint32_t>(offsets[k]));
  185. }
  186. }
  187. Status SingleOpModel::LoadAllNodes() {
  188. auto ge_model = model_helper_.GetGeModel();
  189. GE_CHECK_NOTNULL(ge_model);
  190. Graph graph = ge_model->GetGraph();
  191. model_id_ = ge_model->GetModelId();
  192. auto compute_graph = GraphUtils::GetComputeGraph(graph);
  193. if (compute_graph == nullptr) {
  194. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Get][ComputeGraph] fail, model_name:%s.", model_name_.c_str());
  195. REPORT_CALL_ERROR("E19999", "LoadAllNodes fail for GetComputeGraph return nullptr, model_name:%s.",
  196. model_name_.c_str());
  197. return ACL_ERROR_GE_INTERNAL_ERROR;
  198. }
  199. auto nodes = compute_graph->GetDirectNode();
  200. size_t model_op_size = nodes.size();
  201. GELOGI("[%s] node size = %zu", model_name_.c_str(), model_op_size);
  202. for (size_t i = 0; i < model_op_size; ++i) {
  203. auto node = nodes.at(i);
  204. auto op_desc = node->GetOpDesc();
  205. GE_CHECK_NOTNULL(op_desc);
  206. op_list_[op_desc->GetId()] = node;
  207. auto op_type = op_desc->GetType();
  208. GELOGI("[%s] node[%zu] = %s, type = %s", model_name_.c_str(), i, node->GetName().c_str(), op_type.c_str());
  209. if (op_type == DATA_TYPE || op_type == AIPP_DATA_TYPE) {
  210. data_ops_.emplace_back(op_desc);
  211. auto tensor = op_desc->MutableInputDesc(0);
  212. if (AttrUtils::HasAttr(tensor, ATTR_NAME_VALUE)) {
  213. int32_t index = 0;
  214. (void) AttrUtils::GetInt(op_desc, ATTR_NAME_INDEX, index);
  215. GELOGD("Node %s, index %d, has host mem.", node->GetName().c_str(), index);
  216. op_with_hostmem_[index] = node;
  217. }
  218. continue;
  219. }
  220. if (op_type == CONSTANT || op_type == CONSTANTOP) {
  221. has_weight_ = true;
  222. continue;
  223. }
  224. if (op_type == NETOUTPUT) {
  225. netoutput_op_ = op_desc;
  226. continue;
  227. }
  228. ge_model->GetTBEKernelStore().LoadTBEKernelBinToOpDesc(op_desc);
  229. ge_model->GetCustAICPUKernelStore().LoadCustAICPUKernelBinToOpDesc(op_desc);
  230. }
  231. return SUCCESS;
  232. }
  233. Status SingleOpModel::ParseInputsAndOutputs() {
  234. for (auto &op_desc : data_ops_) {
  235. GE_CHK_STATUS_RET_NOLOG(ParseInputNode(op_desc));
  236. }
  237. ParseOutputNode(netoutput_op_);
  238. return SUCCESS;
  239. }
  240. Status SingleOpModel::SetInputsAndOutputs(SingleOp &single_op) {
  241. int arg_index = 0;
  242. for (size_t i = 0; i < input_offset_list_.size(); ++i) {
  243. auto *addr = model_params_.mem_base + input_offset_list_[i];
  244. model_params_.addr_mapping_.emplace(reinterpret_cast<uintptr_t>(addr), arg_index++);
  245. single_op.input_sizes_.emplace_back(input_sizes_[i]);
  246. single_op.input_addr_list_.emplace_back(addr);
  247. }
  248. for (size_t i = 0; i < output_offset_list_.size(); ++i) {
  249. auto *addr = model_params_.mem_base + output_offset_list_[i];
  250. model_params_.addr_mapping_.emplace(reinterpret_cast<uintptr_t>(addr), arg_index++);
  251. single_op.output_sizes_.emplace_back(output_sizes_[i]);
  252. single_op.output_addr_list_.emplace_back(addr);
  253. }
  254. single_op.args_.resize(arg_index);
  255. return SUCCESS;
  256. }
  257. Status SingleOpModel::BuildTaskList(StreamResource *stream_resource, SingleOp &single_op) {
  258. auto ge_model = model_helper_.GetGeModel();
  259. GE_CHECK_NOTNULL(ge_model);
  260. single_op.arg_table_.resize(single_op.input_sizes_.size() + single_op.output_sizes_.size());
  261. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  262. for (int i = 0; i < tasks.size(); ++i) {
  263. const TaskDef &task_def = tasks[i];
  264. GELOGI("[%s] Task[%d], type = %u, DebugString = %s", model_name_.c_str(), i, task_def.type(),
  265. task_def.DebugString().c_str());
  266. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  267. if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) {
  268. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  269. task_def.kernel_with_handle().context();
  270. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  271. if (kernel_type == ccKernelType::TE) {
  272. GELOGD("Building TBE task");
  273. TbeOpTask *tbe_task = nullptr;
  274. auto ret = BuildKernelTask(task_def, &tbe_task);
  275. if (ret != SUCCESS) {
  276. return ret;
  277. }
  278. ParseArgTable(tbe_task, single_op);
  279. tbe_task->SetModelArgs(model_name_, model_id_);
  280. if (tbe_task->tiling_buffer_ != nullptr) {
  281. tbe_task->stream_resource_ = stream_resource;
  282. }
  283. single_op.tasks_.emplace_back(tbe_task);
  284. } else if (kernel_type == ccKernelType::AI_CPU || kernel_type == ccKernelType::CUST_AI_CPU) {
  285. GELOGD("Building AICPU_CC task");
  286. OpTask *task = nullptr;
  287. uint64_t singleop_kernel_id = aicpu_kernel_id++;
  288. GELOGI("Build singleOp CCTask, kernel_id = %lu", singleop_kernel_id);
  289. auto ret = BuildCpuKernelTask(task_def.kernel(), &task, singleop_kernel_id);
  290. if (ret != SUCCESS) {
  291. return ret;
  292. }
  293. task->SetModelArgs(model_name_, model_id_);
  294. ParseArgTable(task, single_op);
  295. single_op.tasks_.emplace_back(task);
  296. } else {
  297. GELOGE(ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID,
  298. "[Check][KernelType]Only TBE, AI_CPU, CUST_AI_CPU kernel are supported, but got %u",
  299. context.kernel_type());
  300. REPORT_INNER_ERROR("E19999",
  301. "BuildTaskList fail for %u not supported, Only TBE, AI_CPU, CUST_AI_CPU kernel are supported.",
  302. context.kernel_type());
  303. return ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID;
  304. }
  305. } else if (task_type == RT_MODEL_TASK_KERNEL_EX) {
  306. GELOGD("Building AICPU_TF task");
  307. AiCpuTask *aicpu_task = nullptr;
  308. bool depend_compute_flag = false;
  309. uint64_t singleop_kernel_id = aicpu_kernel_id++;
  310. GELOGI("Build singleOp TfTask, kernel_id = %lu", singleop_kernel_id);
  311. auto ret = BuildKernelExTask(task_def.kernel_ex(), &aicpu_task, false, depend_compute_flag, singleop_kernel_id);
  312. if (ret != SUCCESS) {
  313. return ret;
  314. }
  315. aicpu_task->SetModelArgs(model_name_, model_id_);
  316. ParseArgTable(aicpu_task, single_op);
  317. single_op.tasks_.emplace_back(aicpu_task);
  318. } else {
  319. // skip
  320. GELOGD("Skip task type: %d", static_cast<int>(task_type));
  321. }
  322. }
  323. return SUCCESS;
  324. }
  325. void SingleOpModel::ParseArgTable(OpTask *task, SingleOp &op) {
  326. if (task == nullptr) {
  327. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Parse][ArgTable] fail for input OpTask is nullptr.");
  328. REPORT_INNER_ERROR("E19999", "ParseArgTable fail for input OpTask is nullptr.");
  329. return;
  330. }
  331. // args: addr1, addr2, addr3 ...
  332. uintptr_t *arg_base = nullptr;
  333. size_t arg_num = 0;
  334. task->GetIoAddr(arg_base, arg_num);
  335. for (size_t i = 0; i < arg_num; ++i) {
  336. uintptr_t *ptr_to_addr = arg_base + i;
  337. uintptr_t addr = *ptr_to_addr;
  338. auto iter = model_params_.addr_mapping_.find(addr);
  339. if (iter != model_params_.addr_mapping_.end()) {
  340. int arg_index = iter->second;
  341. GELOGI("%s args[%zu] mapped to user designated args[%d]", task->GetOpdesc()->GetName().c_str(), i, arg_index);
  342. op.arg_table_[iter->second].emplace_back(ptr_to_addr);
  343. }
  344. }
  345. }
  346. Status SingleOpModel::BuildKernelTask(const domi::TaskDef &task_def, TbeOpTask **task) {
  347. GE_CHECK_NOTNULL(task);
  348. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  349. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  350. task_def.kernel_with_handle().context();
  351. auto iter = op_list_.find(context.op_index());
  352. if (iter == op_list_.end()) {
  353. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Check][Param:TaskDef]op desc not found. op index = %u", context.op_index());
  354. REPORT_INNER_ERROR("E19999", "BuildKernelTask fail for op desc not found. op index = %u", context.op_index());
  355. return ACL_ERROR_GE_INTERNAL_ERROR;
  356. }
  357. auto *tbe_task = new (std::nothrow) TbeOpTask();
  358. if (tbe_task == nullptr) {
  359. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Create][TbeOpTask]failed.");
  360. REPORT_INNER_ERROR("E19999", "BuildKernelTask fail for new TbeOpTask.");
  361. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  362. }
  363. auto builder = TbeTaskBuilder(model_name_, iter->second, task_def);
  364. auto ret = builder.BuildTask(*tbe_task, model_params_);
  365. if (ret != SUCCESS) {
  366. delete tbe_task;
  367. tbe_task = nullptr;
  368. return ret;
  369. }
  370. *task = tbe_task;
  371. return SUCCESS;
  372. }
  373. Status SingleOpModel::BuildKernelExTask(const domi::KernelExDef &kernel_def, AiCpuTask **task,
  374. bool dynamic_flag, bool& depend_compute_flag, uint64_t kernel_id) {
  375. auto iter = op_list_.find(kernel_def.op_index());
  376. if (iter == op_list_.end()) {
  377. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR,
  378. "[Check][Param:KernelExDef]op not found. op index = %u", kernel_def.op_index());
  379. REPORT_INNER_ERROR("E19999",
  380. "BuildKernelExTask fail for param kernel_def, because op of kernel_def not found, op index:%u.",
  381. kernel_def.op_index());
  382. return ACL_ERROR_GE_INTERNAL_ERROR;
  383. }
  384. std::unique_ptr<AiCpuTask> aicpu_task(new (std::nothrow) AiCpuTask());
  385. if (aicpu_task == nullptr) {
  386. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Create][AiCpuTask] failed.");
  387. REPORT_INNER_ERROR("E19999", "BuildKernelExTask fail for new AiCpuTask, model_name:%s.", model_name_.c_str());
  388. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  389. }
  390. auto builder = AiCpuTaskBuilder(iter->second->GetOpDesc(), kernel_def);
  391. auto ret = builder.BuildTask(*aicpu_task, model_params_, dynamic_flag, kernel_id);
  392. if (ret != SUCCESS) {
  393. GELOGE(ret, "[Build][Task] failed, kernel_id:%lu.", kernel_id);
  394. return ret;
  395. }
  396. depend_compute_flag = (aicpu_task->GetUnknownType() == DEPEND_COMPUTE);
  397. *task = aicpu_task.release();
  398. return SUCCESS;
  399. }
  400. Status SingleOpModel::BuildCpuKernelTask(const domi::KernelDef &kernel_def, OpTask **task, uint64_t kernel_id) {
  401. const auto &context = kernel_def.context();
  402. auto iter = op_list_.find(context.op_index());
  403. if (iter == op_list_.end()) {
  404. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR,
  405. "[Check][Param:KernelDef] op desc not found. op index = %u", context.op_index());
  406. REPORT_INNER_ERROR("E19999",
  407. "BuildCpuKernelTask fail for kernel_def is invalid, because op of kernel_def not found, op index:%u.",
  408. context.op_index());
  409. return ACL_ERROR_GE_INTERNAL_ERROR;
  410. }
  411. std::unique_ptr<AiCpuCCTask> aicpucc_task(new (std::nothrow) AiCpuCCTask());
  412. if (aicpucc_task == nullptr) {
  413. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Create][AiCpuCCTask] failed");
  414. REPORT_INNER_ERROR("E19999", "BuildCpuKernelTask fail for new AiCpuCCTask, model_name:%s.", model_name_.c_str());
  415. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  416. }
  417. auto builder = AiCpuCCTaskBuilder(iter->second->GetOpDesc(), kernel_def);
  418. auto ret = builder.BuildTask(*aicpucc_task, kernel_id, model_params_);
  419. if (ret != SUCCESS) {
  420. GELOGE(ret, "[Build][AiCpuCCTask]failed, kernel_id:%lu.", kernel_id);
  421. REPORT_CALL_ERROR("E19999", "BuildCpuKernelTask fail for build AiCpuTask, kernel_id:%lu.", kernel_id);
  422. return ret;
  423. }
  424. *task = aicpucc_task.release();
  425. return SUCCESS;
  426. }
  427. Status SingleOpModel::InitHybridModelExecutor(const StreamResource &resource, const GeModelPtr &ge_model,
  428. SingleOp &single_op) {
  429. for (const auto &op_desc : data_ops_) {
  430. auto output_tensor_desc = op_desc->GetOutputDesc(kOutputIndexOfData);
  431. GeTensorDesc tensor_desc(output_tensor_desc);
  432. single_op.inputs_desc_.emplace_back(tensor_desc);
  433. GELOGD("Init inputs desc from %s.", op_desc->GetName().c_str());
  434. }
  435. GE_CHK_STATUS_RET_NOLOG(hybrid::NodeExecutorManager::GetInstance().EnsureInitialized());
  436. auto root_model = model_helper_.GetGeRootModel();
  437. GE_CHECK_NOTNULL(root_model);
  438. root_model->SetRootGraph(GraphUtils::GetComputeGraph(ge_model->GetGraph()));
  439. root_model->SetSubgraphInstanceNameToModel(root_model->GetRootGraph()->GetName(), ge_model);
  440. single_op.hybrid_model_.reset(new (std::nothrow)hybrid::HybridModel(root_model));
  441. GE_CHECK_NOTNULL(single_op.hybrid_model_);
  442. GE_CHK_STATUS_RET(single_op.hybrid_model_->Init(true), "[Init][HybridModel]Failed.");
  443. int32_t device_id = 0;
  444. GE_CHK_RT_RET(rtGetDevice(&device_id));
  445. single_op.hybrid_model_executor_.reset(new (std::nothrow)hybrid::HybridModelExecutor(single_op.hybrid_model_.get(),
  446. device_id,
  447. resource.GetStream()));
  448. GE_CHECK_NOTNULL(single_op.hybrid_model_executor_);
  449. GE_CHK_STATUS_RET(single_op.hybrid_model_executor_->Init(), "[Init][HybridModelExecutor]Failed.");
  450. return SUCCESS;
  451. }
  452. Status SingleOpModel::BuildOp(StreamResource &resource, SingleOp &single_op) {
  453. GE_CHK_STATUS_RET_NOLOG(ParseInputsAndOutputs());
  454. GE_CHK_STATUS_RET_NOLOG(InitModelMem(resource));
  455. single_op.running_param_.reset(new (std::nothrow)SingleOpModelParam(model_params_));
  456. GE_CHECK_NOTNULL(single_op.running_param_);
  457. GE_CHK_STATUS_RET_NOLOG(SetInputsAndOutputs(single_op));
  458. auto ge_model = model_helper_.GetGeModel();
  459. GE_CHECK_NOTNULL(ge_model);
  460. bool infer_depend_flag = false;
  461. GE_CHK_STATUS_RET(IfInferDepend(ge_model, infer_depend_flag), "[Check][InferDepend] failed.");
  462. if (infer_depend_flag) {
  463. // construct single_op, do single op with HybridModelExecutor
  464. GELOGD("Init hybrid model params of single op, and will do execute with hybrid model executor.");
  465. return InitHybridModelExecutor(resource, ge_model, single_op);
  466. }
  467. return BuildTaskList(&resource, single_op);
  468. }
  469. Status SingleOpModel::BuildModelTaskKernel(StreamResource *stream_resource, const TaskDef &task_def,
  470. DynamicSingleOp &single_op) {
  471. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  472. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  473. task_def.kernel_with_handle().context();
  474. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  475. if (kernel_type == ccKernelType::TE) {
  476. GELOGD("Building TBE task.");
  477. TbeOpTask *tbe_task = nullptr;
  478. GE_CHK_STATUS_RET_NOLOG(BuildKernelTask(task_def, &tbe_task));
  479. tbe_task->SetModelArgs(model_name_, model_id_);
  480. if (tbe_task->tiling_buffer_ != nullptr) {
  481. GELOGD("tiling buffer is not nullptr.");
  482. tbe_task->stream_resource_ = stream_resource;
  483. }
  484. single_op.op_task_.reset(tbe_task);
  485. } else if (kernel_type == ccKernelType::AI_CPU || kernel_type == ccKernelType::CUST_AI_CPU) {
  486. GELOGD("Building AICPU_CC task");
  487. OpTask *task = nullptr;
  488. uint64_t dynamic_singleop_kernel_id = aicpu_kernel_id++;
  489. GELOGI("Build dynamic singleOp CCTask, kernel_id = %lu", dynamic_singleop_kernel_id);
  490. GE_CHK_STATUS_RET_NOLOG(BuildCpuKernelTask(task_def.kernel(), &task, dynamic_singleop_kernel_id));
  491. task->SetModelArgs(model_name_, model_id_);
  492. single_op.op_task_.reset(task);
  493. } else {
  494. GELOGE(ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID,
  495. "[Check][Param:TaskDef]Only TBE, AI_CPU, CUST_AI_CPU kernel are supported, but got %u",
  496. context.kernel_type());
  497. REPORT_INNER_ERROR("E19999",
  498. "BuildModelTaskKernel fail for got:%u not supported, Only TBE, AI_CPU, CUST_AI_CPU kernel are supported.",
  499. context.kernel_type());
  500. return ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID;
  501. }
  502. return SUCCESS;
  503. }
  504. Status SingleOpModel::BuildTaskListForDynamicOp(StreamResource *stream_resource, DynamicSingleOp &single_op) {
  505. auto ge_model = model_helper_.GetGeModel();
  506. GE_CHECK_NOTNULL(ge_model);
  507. auto compute_graph = GraphUtils::GetComputeGraph(ge_model->GetGraph());
  508. GE_CHECK_NOTNULL(compute_graph);
  509. single_op.compute_graph_ = compute_graph;
  510. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  511. for (int i = 0; i < tasks.size(); ++i) {
  512. const TaskDef &task_def = tasks[i];
  513. GELOGI("[%s] Task[%d], type = [%u], DebugString = [%s]", model_name_.c_str(), i, task_def.type(),
  514. task_def.DebugString().c_str());
  515. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  516. if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) {
  517. if (single_op.op_task_ != nullptr) {
  518. GELOGE(ACL_ERROR_GE_OP_TASK_TYPE_INVALID, "[Check][TaskType]Do not support dynamic op with multiple tasks.");
  519. REPORT_INNER_ERROR("E19999",
  520. "BuildTaskListForDynamicOp fail for Do not support dynamic op with multiple tasks.");
  521. return ACL_ERROR_GE_OP_TASK_TYPE_INVALID;
  522. }
  523. GE_CHK_STATUS_RET_NOLOG(BuildModelTaskKernel(stream_resource, task_def, single_op));
  524. } else if (task_type == RT_MODEL_TASK_KERNEL_EX) {
  525. if (single_op.op_task_ != nullptr) {
  526. GELOGE(ACL_ERROR_GE_OP_TASK_TYPE_INVALID, "[Check][TaskType]Do not support dynamic op with multiple tasks.");
  527. REPORT_INNER_ERROR("E19999",
  528. "BuildTaskListForDynamicOp fail for Do not support dynamic op with multiple tasks.");
  529. return ACL_ERROR_GE_OP_TASK_TYPE_INVALID;
  530. }
  531. GELOGD("Building AICPU_TF task");
  532. AiCpuTask *aicpu_task = nullptr;
  533. bool depend_compute_flag = false;
  534. uint64_t dynamic_singleop_kernel_id = aicpu_kernel_id++;
  535. GELOGI("Build dynamic singleOp TfTask, kernel_id = %lu", dynamic_singleop_kernel_id);
  536. GE_CHK_STATUS_RET_NOLOG(BuildKernelExTask(task_def.kernel_ex(), &aicpu_task, true,
  537. depend_compute_flag, dynamic_singleop_kernel_id));
  538. if (depend_compute_flag) {
  539. if (i >= tasks.size() - 1) {
  540. GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Check][Task]The copy task of the fourth operator was not found.");
  541. REPORT_INNER_ERROR("E19999", "The copy task of the fourth operator was not found.");
  542. return ACL_ERROR_GE_PARAM_INVALID;
  543. }
  544. ++i;
  545. const TaskDef &copy_task_def = tasks[i];
  546. GE_CHK_STATUS_RET_NOLOG(aicpu_task->SetMemCopyTask(copy_task_def.kernel_ex()));
  547. }
  548. aicpu_task->SetModelArgs(model_name_, model_id_);
  549. single_op.op_task_.reset(aicpu_task);
  550. } else {
  551. // skip
  552. GELOGD("Skip task type: %d", static_cast<int>(task_type));
  553. }
  554. }
  555. return SUCCESS;
  556. }
  557. Status SingleOpModel::BuildDynamicOp(StreamResource &resource, DynamicSingleOp &single_op) {
  558. single_op.num_inputs_ = data_ops_.size();
  559. single_op.num_outputs_ = netoutput_op_->GetAllInputsSize();
  560. GE_CHK_STATUS_RET_NOLOG(InitModelMem(resource));
  561. model_params_.memory_size = UINT64_MAX;
  562. model_params_.graph_is_dynamic = true;
  563. auto ge_model = model_helper_.GetGeModel();
  564. GE_CHECK_NOTNULL(ge_model);
  565. bool need_hybrid_model = false;
  566. GE_CHK_STATUS_RET(NeedHybridModel(ge_model, need_hybrid_model), "[Check][NeedHybridModel] failed.");
  567. if (need_hybrid_model) {
  568. GELOGD("Build single op HybridModel.");
  569. GE_CHK_STATUS_RET_NOLOG(hybrid::NodeExecutorManager::GetInstance().EnsureInitialized());
  570. GE_CHK_STATUS(SetHostMemTensor(single_op), "[Init][HostMem]Failed.");
  571. auto root_model = model_helper_.GetGeRootModel();
  572. GE_CHECK_NOTNULL(root_model);
  573. root_model->SetRootGraph(GraphUtils::GetComputeGraph(ge_model->GetGraph()));
  574. root_model->SetSubgraphInstanceNameToModel(root_model->GetRootGraph()->GetName(), ge_model);
  575. single_op.hybrid_model_.reset(new (std::nothrow)hybrid::HybridModel(root_model));
  576. GE_CHECK_NOTNULL(single_op.hybrid_model_);
  577. GE_CHK_STATUS_RET(single_op.hybrid_model_->Init(true), "[Init][HybridModel]Failed.");
  578. int32_t device_id = 0;
  579. GE_CHK_RT_RET(rtGetDevice(&device_id));
  580. single_op.hybrid_model_executor_.reset(new (std::nothrow)hybrid::HybridModelExecutor(single_op.hybrid_model_.get(),
  581. device_id,
  582. resource.GetStream()));
  583. GE_CHECK_NOTNULL(single_op.hybrid_model_executor_);
  584. GE_CHK_STATUS_RET(single_op.hybrid_model_executor_->Init(), "[Init][HybridModelExecutor]Failed.");
  585. return SUCCESS;
  586. }
  587. return BuildTaskListForDynamicOp(&resource, single_op);
  588. }
  589. Status SingleOpModel::SetHostMemTensor(DynamicSingleOp &single_op) {
  590. for (auto &node_map : op_with_hostmem_) {
  591. auto node = node_map.second;
  592. auto out_anchor = node->GetOutDataAnchor(0);
  593. GE_CHECK_NOTNULL(out_anchor);
  594. auto in_anchors = out_anchor->GetPeerInDataAnchors();
  595. vector<GeTensorDescPtr> tensor_descs;
  596. auto idx = node_map.first;
  597. for (auto anchor : in_anchors) {
  598. GE_CHECK_NOTNULL(anchor);
  599. auto output_node = anchor->GetOwnerNode();
  600. GE_CHECK_NOTNULL(output_node);
  601. auto op_desc = output_node->GetOpDesc();
  602. GE_CHECK_NOTNULL(op_desc);
  603. auto tensor_desc = op_desc->MutableInputDesc(anchor->GetIdx());
  604. tensor_descs.emplace_back(tensor_desc);
  605. GELOGD("Get %d th input tensor desc of %s by %d data node: %s.", anchor->GetIdx(),
  606. output_node->GetName().c_str(), idx, node->GetName().c_str());
  607. }
  608. single_op.tensor_with_hostmem_[idx] = tensor_descs;
  609. }
  610. return SUCCESS;
  611. }
  612. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示