You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

hybrid_model.cc 16 kB

5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid_model.h"
  17. #include <vector>
  18. #include "graph/debug/ge_attr_define.h"
  19. #include "graph/load/model_manager/model_utils.h"
  20. #include "graph/utils/graph_utils.h"
  21. #include "graph/utils/node_utils.h"
  22. #include "graph/utils/tensor_utils.h"
  23. #include "graph/utils/type_utils.h"
  24. #include "hybrid/common/npu_memory_allocator.h"
  25. #include "hybrid/model/hybrid_model_builder.h"
  26. #include "hybrid/node_executor/node_executor.h"
  27. #include "common/op/ge_op_utils.h"
  28. namespace ge {
  29. namespace hybrid {
  30. namespace {
  31. const int64_t kMemSizeUnknownShape = -1; // Unknown shape mem size
  32. }
  33. HybridModel::HybridModel(GeRootModelPtr ge_model) : ge_root_model_(std::move(ge_model)) {
  34. }
  35. HybridModel::~HybridModel() {
  36. GELOGD("[%s] HybridModel destroyed.", model_name_.c_str());
  37. }
  38. Status HybridModel::Init(bool is_single_op) {
  39. GELOGD("Start to init hybrid model.");
  40. is_single_op_ = is_single_op;
  41. if (is_single_op) {
  42. GE_CHK_STATUS_RET(HybridModelBuilder(*this).BuildForSingleOp(), "[Build][HybridModel] for SingleOp failed.");
  43. } else {
  44. GE_CHK_STATUS_RET(HybridModelBuilder(*this).Build(), "[Build][HybridModel] failed.");
  45. }
  46. GELOGD("HybridModel initialized successfully.");
  47. return SUCCESS;
  48. }
  49. TensorValue *HybridModel::GetVariable(const string &name) const {
  50. auto it = variable_tensors_.find(name);
  51. if (it == variable_tensors_.end()) {
  52. GELOGD("Failed to get variable tensor. var name = [%s]", name.c_str());
  53. return nullptr;
  54. }
  55. GELOGD("Got variable tensor. var name = [%s], tensor = %s", name.c_str(), it->second->DebugString().c_str());
  56. return it->second.get();
  57. }
  58. NodePtr HybridModel::GetVariableNode(const string &name) const {
  59. auto it = device_variable_nodes_.find(name);
  60. if (it != device_variable_nodes_.end()) {
  61. return it->second;
  62. }
  63. auto host_find = host_variable_nodes_.find(name);
  64. if (host_find != host_variable_nodes_.end()) {
  65. return host_find->second;
  66. }
  67. GELOGD("Failed to get variable node by name = [%s]", name.c_str());
  68. return nullptr;
  69. }
  70. const std::vector<domi::TaskDef> *HybridModel::GetTaskDefs(const NodePtr &node) const {
  71. auto it = task_defs_.find(node);
  72. if (it == task_defs_.end()) {
  73. return nullptr;
  74. }
  75. return &it->second;
  76. }
  77. NodeItem *HybridModel::MutableNodeItem(const NodePtr &node) {
  78. auto it = node_items_.find(node);
  79. if (it == node_items_.end()) {
  80. return nullptr;
  81. }
  82. return it->second.get();
  83. }
  84. const NodeItem *HybridModel::GetNodeItem(const NodePtr &node) const {
  85. auto it = node_items_.find(node);
  86. if (it == node_items_.end()) {
  87. return nullptr;
  88. }
  89. return it->second.get();
  90. }
  91. GeModelPtr HybridModel::GetGeModel(const NodePtr &node) const {
  92. auto it = known_shape_sub_models_.find(node);
  93. if (it == known_shape_sub_models_.end()) {
  94. GELOGE(INTERNAL_ERROR, "[Check][Param:node][%s] Failed to get GeModel for subgraph node,"
  95. "because node not in known_shape_sub_models_.", node->GetName().c_str());
  96. REPORT_INNER_ERROR("E19999", "%s Failed to get GeModel for subgraph node,"
  97. "because node not in known_shape_sub_models_.", node->GetName().c_str());
  98. return nullptr;
  99. }
  100. return it->second;
  101. }
  102. const GraphItem *HybridModel::GetRootGraphItem() const {
  103. return root_graph_item_.get();
  104. }
  105. const GraphItem *HybridModel::GetSubgraphItem(const std::string &graph_name) const {
  106. GELOGD("To find subgraph item by name = %s", graph_name.c_str());
  107. auto it = subgraph_items_.find(graph_name);
  108. if (it == subgraph_items_.end()) {
  109. GELOGD("Subgraph item not found by node = %s", graph_name.c_str());
  110. return nullptr;
  111. }
  112. return it->second.get();
  113. }
  114. const GraphItem *HybridModel::GetSubgraphItem(const ComputeGraphPtr &subgraph) const {
  115. if (subgraph == nullptr) {
  116. REPORT_INNER_ERROR("E19999", "Input param subgraph is nullptr, Graph:%s",
  117. root_graph_item_->GetName().c_str());
  118. GELOGE(PARAM_INVALID, "[Check][Param]subgraph is nullptr. graph:%s",
  119. root_graph_item_->GetName().c_str());
  120. return nullptr;
  121. }
  122. auto subgraph_name = subgraph->GetName();
  123. return GetSubgraphItem(subgraph_name);
  124. }
  125. const string &HybridModel::GetModelName() const {
  126. return model_name_;
  127. }
  128. Status HybridModel::GetDynamicBatchInfo(std::vector<std::vector<int64_t>> &batch_info, int32_t &dynamic_type) {
  129. // dynamic shape do not need dynamic batch
  130. batch_info = {};
  131. dynamic_type = -1;
  132. return SUCCESS;
  133. }
  134. void HybridModel::GetUserDesignateShapeOrder(std::vector<std::string> &user_input_shape_order) {
  135. // dynamic shape do not need dynamic batch
  136. user_input_shape_order = {};
  137. }
  138. void HybridModel::GetModelAttr(std::vector<std::string> &dynamic_output_shape_info) {
  139. dynamic_output_shape_info = {};
  140. }
  141. Status HybridModel::GetInputOutputDescInfo(vector<InputOutputDescInfo> &input_desc,
  142. vector<InputOutputDescInfo> &output_desc,
  143. std::vector<uint32_t> &input_formats,
  144. std::vector<uint32_t> &output_formats) {
  145. auto node_item_list = root_graph_item_->GetInputNodes();
  146. if (node_item_list.empty()) {
  147. REPORT_INNER_ERROR("E19999", "node item list is empty!, graph:%s",
  148. root_graph_item_->GetName().c_str());
  149. GELOGE(FAILED, "[Get][InputNodes]node item list is empty!, graph:%s",
  150. root_graph_item_->GetName().c_str());
  151. return FAILED;
  152. }
  153. GE_CHECK_NOTNULL(node_item_list[0]->node);
  154. GE_CHECK_NOTNULL(node_item_list[0]->node->GetOpDesc());
  155. if (node_item_list[0]->node->GetOpDesc()->GetInputsSize() != 1) {
  156. REPORT_INNER_ERROR("E19999", "Input size of op is not 1, op:%s, type:%s",
  157. node_item_list[0]->node->GetName().c_str(),
  158. node_item_list[0]->node->GetType().c_str());
  159. GELOGE(FAILED, "[Check][Size]input size of op is not 1! op:%s, type:%s",
  160. node_item_list[0]->node->GetName().c_str(),
  161. node_item_list[0]->node->GetType().c_str());
  162. return FAILED;
  163. }
  164. GE_CHK_STATUS_RET(GetInputDescInfo(input_desc, input_formats), "[Get][InputDescInfo] failed.");
  165. GE_CHK_STATUS_RET(GetOutputDescInfo(output_desc, output_formats), "[Get][OutputDescInfo] failed.");
  166. return SUCCESS;
  167. }
  168. void HybridModel::SetInputDimsAndShapeRangesInfo(const vector<int64_t> &model_input_dims,
  169. std::vector<std::pair<int64_t, int64_t>> &shape_ranges,
  170. InputOutputDescInfo &input) {
  171. for (auto model_input_dim : model_input_dims) {
  172. input.shape_info.dims.push_back(model_input_dim);
  173. }
  174. input.shape_info.shape_ranges = shape_ranges;
  175. return;
  176. }
  177. void HybridModel::CreateInputDimsInfo(const OpDescPtr &op_desc, InputOutputDescInfo &input) {
  178. std::vector<std::pair<int64_t,int64_t>> shape_ranges;
  179. if (is_new_model_desc_ && op_desc->HasAttr(ATTR_NAME_INPUT_DIMS)) {
  180. // When static aipp is set, need to get the model input dims which processed by aipp
  181. vector<int64_t> model_input_dims;
  182. (void)AttrUtils::GetListInt(op_desc, ATTR_NAME_INPUT_DIMS, model_input_dims);
  183. SetInputDimsAndShapeRangesInfo(model_input_dims, shape_ranges, input);
  184. return;
  185. }
  186. // judge if this data is linked dynamic aipp first, multiply batch has been considered
  187. if (op_desc->HasAttr("_dynamic_aipp_input_dims")) {
  188. vector<int64_t> dynamic_aipp_input_dims;
  189. (void)AttrUtils::GetListInt(op_desc, "_dynamic_aipp_input_dims", dynamic_aipp_input_dims);
  190. SetInputDimsAndShapeRangesInfo(dynamic_aipp_input_dims, shape_ranges, input);
  191. return;
  192. } else {
  193. vector<int64_t> input_dims = op_desc->GetInputDescPtr(0)->GetShape().GetDims();
  194. op_desc->GetInputDescPtr(0)->GetShapeRange(shape_ranges);
  195. SetInputDimsAndShapeRangesInfo(input_dims, shape_ranges, input);
  196. return;
  197. }
  198. }
  199. Status HybridModel::GetInputDescInfo(vector<InputOutputDescInfo> &input_desc, std::vector<uint32_t> &formats) {
  200. auto node_item_list = root_graph_item_->GetInputNodes();
  201. for (auto &node_item : node_item_list) {
  202. InputOutputDescInfo input;
  203. GE_CHECK_NOTNULL(node_item->node);
  204. auto op_desc = node_item->node->GetOpDesc();
  205. GE_CHECK_NOTNULL(op_desc);
  206. GE_CHECK_NOTNULL(op_desc->GetInputDescPtr(0));
  207. Format format = op_desc->GetInputDescPtr(0)->GetFormat();
  208. DataType data_type = op_desc->GetInputDescPtr(0)->GetDataType();
  209. input.data_type = static_cast<uint32_t>(data_type);
  210. input.name = op_desc->GetName();
  211. GeShape shape = op_desc->GetInputDescPtr(0)->GetShape();
  212. int64_t tensor_size = 0;
  213. if (TensorUtils::CalcTensorMemSize(shape, format, data_type, tensor_size) != GRAPH_SUCCESS) {
  214. GELOGE(FAILED, "[Calculate][TensorMemSize] failed input0 desc in node:%s."
  215. "shape:%s, format:%s, datatype:%s.", op_desc->GetName().c_str(),
  216. shape.ToString().c_str(), TypeUtils::FormatToSerialString(format).c_str(),
  217. TypeUtils::DataTypeToSerialString(data_type).c_str());
  218. REPORT_CALL_ERROR("E19999", "CalcTensorMemSize failed for input0 desc in node:%s,"
  219. "shape:%s, format:%s, datatype:%s", op_desc->GetName().c_str(),
  220. shape.ToString().c_str(), TypeUtils::FormatToSerialString(format).c_str(),
  221. TypeUtils::DataTypeToSerialString(data_type).c_str());
  222. return FAILED;
  223. }
  224. if (tensor_size == kMemSizeUnknownShape) {
  225. tensor_size = 0;
  226. }
  227. input.size = static_cast<uint64_t>(tensor_size);
  228. CreateInputDimsInfo(op_desc, input);
  229. formats.push_back(format);
  230. input_desc.push_back(input);
  231. }
  232. is_new_model_desc_ = false;
  233. return SUCCESS;
  234. }
  235. void HybridModel::CreateOutput(ConstGeTensorDescPtr &output_desc,
  236. InputOutputDescInfo &output_desc_info, uint32_t &format_result) {
  237. GE_IF_BOOL_EXEC(output_desc == nullptr,
  238. REPORT_INNER_ERROR("E19999", "param output_desc is nullptr, check invalid.");
  239. GELOGE(FAILED, "[Check][Param:output_desc]output desc ptr is nullptr");
  240. return );
  241. Format format = output_desc->GetFormat();
  242. GeShape shape = output_desc->GetShape();
  243. std::vector<std::pair<int64_t,int64_t>> shape_ranges;
  244. output_desc->GetShapeRange(shape_ranges);
  245. DataType data_type = output_desc->GetDataType();
  246. format_result = format;
  247. if (format == FORMAT_FRACTAL_Z) { // FraczToHWCK
  248. int64_t k = shape.GetDim(0); // 0: first dim
  249. int64_t c = shape.GetDim(1); // 1: second dim
  250. int64_t h = shape.GetDim(2); // 2: third dim
  251. int64_t w = shape.GetDim(3); // 3: forth dim
  252. output_desc_info.shape_info.dims.push_back(h);
  253. output_desc_info.shape_info.dims.push_back(w);
  254. output_desc_info.shape_info.dims.push_back(c);
  255. output_desc_info.shape_info.dims.push_back(k);
  256. if (shape_ranges.size() == 4) { // 4 dims
  257. output_desc_info.shape_info.shape_ranges.push_back(shape_ranges[2]); // h:2
  258. output_desc_info.shape_info.shape_ranges.push_back(shape_ranges[3]); // w:3
  259. output_desc_info.shape_info.shape_ranges.push_back(shape_ranges[1]); // c:1
  260. output_desc_info.shape_info.shape_ranges.push_back(shape_ranges[0]); // k:0
  261. }
  262. format_result = FORMAT_HWCN;
  263. } else {
  264. for (size_t j = 0; j < shape.GetDimNum(); j++) {
  265. output_desc_info.shape_info.dims.push_back(shape.GetDim(j));
  266. }
  267. output_desc_info.shape_info.shape_ranges = shape_ranges;
  268. }
  269. int64_t tensor_size = 0;
  270. (void)TensorUtils::CalcTensorMemSize(shape, format, data_type, tensor_size);
  271. if (tensor_size == kMemSizeUnknownShape) {
  272. tensor_size = 0;
  273. }
  274. output_desc_info.size = static_cast<uint64_t>(tensor_size);
  275. output_desc_info.data_type = output_desc->GetDataType();
  276. }
  277. Status HybridModel::GetOutputDescInfo(vector<InputOutputDescInfo> &output_desc, std::vector<uint32_t> &formats) {
  278. std::vector<ConstGeTensorDescPtr> output_desc_list;
  279. // output_desc_list contains vaild input desc
  280. GE_CHK_STATUS_RET(root_graph_item_->GetOutputDescList(output_desc_list),
  281. "[Invoke][GetOutputDescList]get output desc info failed, Graph:%s",
  282. root_graph_item_->GetName().c_str());
  283. vector<std::string> out_node_names;
  284. (void)ge::AttrUtils::GetListStr(ge_root_model_->GetRootGraph(), ATTR_MODEL_OUT_NODES_NAME, out_node_names);
  285. GE_CHECK_NOTNULL(root_graph_item_->GetOutputNode());
  286. auto op_desc = root_graph_item_->GetOutputNode()->op_desc;
  287. GE_CHECK_NOTNULL(op_desc);
  288. auto out_size = static_cast<uint32_t>(op_desc->GetInputsSize());
  289. GE_IF_BOOL_EXEC(out_size != output_desc_list.size(),
  290. REPORT_INNER_ERROR("E19999", "output size[%u] not match output_desc_list size[%zu]",
  291. out_size, output_desc_list.size());
  292. GELOGE(FAILED, "[Check][Size]output size[%u] not match output_desc_list size[%zu]",
  293. out_size, output_desc_list.size());
  294. return FAILED;);
  295. for (uint32_t index = 0; index < out_size; ++index) {
  296. string output_name;
  297. std::vector<std::string> src_name = op_desc->GetSrcName();
  298. std::vector<int64_t> src_index = op_desc->GetSrcIndex();
  299. if (out_size == out_node_names.size()) {
  300. bool contains_colon = out_node_names[index].find(":") != std::string::npos;
  301. output_name = contains_colon ? out_node_names[index] : out_node_names[index] +
  302. ":" + std::to_string(src_index[index]);
  303. } else {
  304. output_name = std::string("output_") + std::to_string(index) + "_" + src_name[index] +
  305. "_" + std::to_string(src_index[index]);
  306. }
  307. InputOutputDescInfo output_desc_info;
  308. output_desc_info.name = output_name;
  309. uint32_t format_result;
  310. CreateOutput(output_desc_list[index], output_desc_info, format_result);
  311. output_desc.push_back(output_desc_info);
  312. formats.push_back(format_result);
  313. }
  314. return SUCCESS;
  315. }
  316. TensorValue *HybridModel::GetConstant(const NodePtr &node) const {
  317. if (node == nullptr) {
  318. GELOGE(PARAM_INVALID, "[Check][Param:node]node is null.");
  319. REPORT_INNER_ERROR("E19999", "param node is null, check invalid.");
  320. return nullptr;
  321. }
  322. auto it = constant_tensors_.find(node);
  323. if (it == constant_tensors_.end()) {
  324. GELOGD("constant not found, node name = [%s]", node->GetName().c_str());
  325. return nullptr;
  326. }
  327. GELOGD("Got constant tensor, node name = [%s], tensor = %s",
  328. node->GetName().c_str(),
  329. it->second->DebugString().c_str());
  330. return it->second.get();
  331. }
  332. TensorValue *HybridModel::GetTensor(const NodePtr &node) const {
  333. if (node == nullptr) {
  334. GELOGE(PARAM_INVALID, "[Check][Param:node]node is null.");
  335. REPORT_INNER_ERROR("E19999", "param node is null, check invalid.");
  336. return nullptr;
  337. }
  338. if (node->GetType() == CONSTANT) {
  339. return GetConstant(node);
  340. }
  341. return GetVariable(node->GetName());
  342. }
  343. const map<int64_t, std::vector<std::pair<int, Tensor>>> &HybridModel::GetHostTensors() const {
  344. return host_tensors_;
  345. }
  346. void *HybridModel::GetGlobalStep() const {
  347. if (global_step_ == nullptr) {
  348. return nullptr;
  349. }
  350. return global_step_->GetData();
  351. }
  352. TensorBuffer *HybridModel::GetModelWeight(const string &subgraph_name) const {
  353. auto it = weight_buffer_map_.find(subgraph_name);
  354. if (it == weight_buffer_map_.end()) {
  355. GELOGD("Model weight not found, subgraph name = %s", subgraph_name.c_str());
  356. return nullptr;
  357. }
  358. return it->second.get();
  359. }
  360. } // namespace hybrid
  361. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示