You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

op_task.h 8.6 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_SINGLE_OP_TASK_OP_TASK_H_
  17. #define GE_SINGLE_OP_TASK_OP_TASK_H_
  18. #include <memory>
  19. #include <string>
  20. #include <external/graph/tensor.h>
  21. #include "common/dump/dump_op.h"
  22. #include "common/dump/dump_properties.h"
  23. #include "common/ge_inner_error_codes.h"
  24. #include "graph/op_kernel_bin.h"
  25. #include "runtime/stream.h"
  26. #include "graph/node.h"
  27. #include "cce/aicpu_engine_struct.h"
  28. #include "hybrid/node_executor/aicpu/aicpu_ext_info.h"
  29. #include "init/gelib.h"
  30. namespace ge {
  31. class StreamResource;
  32. struct SingleOpModelParam;
  33. class OpTask {
  34. public:
  35. OpTask() = default;
  36. virtual ~OpTask() = default;
  37. virtual Status LaunchKernel(rtStream_t stream) = 0;
  38. virtual Status UpdateRunInfo(const vector<GeTensorDesc> &input_desc,
  39. const vector<GeTensorDesc> &output_desc);
  40. virtual Status UpdateArgTable(const SingleOpModelParam &param);
  41. void SetModelArgs(std::string model_name, uint32_t model_id);
  42. Status GetProfilingArgs(std::string &model_name, std::string &op_name, uint32_t &model_id, uint32_t &block_dim);
  43. const OpDescPtr &GetOpdesc() const {return op_desc_;}
  44. Status OpenDump(rtStream_t stream);
  45. virtual void GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) = 0;
  46. virtual Status LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
  47. const std::vector<DataBuffer> &input_buffers,
  48. std::vector<GeTensorDesc> &output_desc,
  49. std::vector<DataBuffer> &output_buffers,
  50. rtStream_t stream);
  51. virtual uint32_t GetTaskType() const;
  52. protected:
  53. Status DoUpdateArgTable(const SingleOpModelParam &param, bool keep_workspace);
  54. DumpProperties dump_properties_;
  55. DumpOp dump_op_;
  56. OpDescPtr op_desc_;
  57. std::string model_name_;
  58. uint32_t model_id_ = 0;
  59. uint32_t block_dim_ = 1;
  60. };
  61. class TbeOpTask : public OpTask {
  62. public:
  63. ~TbeOpTask() override;
  64. Status LaunchKernel(rtStream_t stream) override;
  65. Status LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
  66. const std::vector<DataBuffer> &input_buffers,
  67. std::vector<GeTensorDesc> &output_desc,
  68. std::vector<DataBuffer> &output_buffers,
  69. rtStream_t stream) override;
  70. void GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) override;
  71. void SetSmDesc(void *sm_desc);
  72. void SetStubFunc(const std::string &name, const void *stub_func);
  73. void SetKernelArgs(std::unique_ptr<uint8_t[]> &&args, size_t arg_size, uint32_t block_dim, const OpDescPtr &op_desc);
  74. Status UpdateRunInfo(const vector<GeTensorDesc> &input_desc,
  75. const vector<GeTensorDesc> &output_desc) override;
  76. const void *GetArgs() const;
  77. size_t GetArgSize() const;
  78. const std::string &GetStubName() const;
  79. void EnableDynamicSupport(const NodePtr &node, void *tiling_buffer, size_t max_tiling_size);
  80. uint32_t GetTaskType() const override;
  81. private:
  82. friend class SingleOpModel;
  83. static Status UpdateTensorDesc(const GeTensorDesc &src_tensor, GeTensorDesc &dst_tensor);
  84. Status UpdateNodeByShape(const vector<GeTensorDesc> &input_desc,
  85. const vector<GeTensorDesc> &output_desc);
  86. Status AllocateWorkspaces(const std::vector<int64_t> &workspace_sizes);
  87. const void *stub_func_ = nullptr;
  88. std::unique_ptr<uint8_t[]> args_;
  89. size_t arg_size_ = 0;
  90. void *sm_desc_ = nullptr;
  91. std::string stub_name_;
  92. StreamResource *stream_resource_ = nullptr;
  93. void *tiling_buffer_ = nullptr;
  94. uint32_t max_tiling_size_ = 0;
  95. std::string tiling_data_;
  96. std::vector<void *> workspaces_;
  97. NodePtr node_;
  98. };
  99. class AiCpuBaseTask : public OpTask {
  100. public:
  101. AiCpuBaseTask() = default;
  102. ~AiCpuBaseTask() override;
  103. UnknowShapeOpType GetUnknownType() const { return unknown_type_; }
  104. Status UpdateArgTable(const SingleOpModelParam &param) override;
  105. uint32_t GetTaskType() const override;
  106. protected:
  107. Status UpdateIoAddr(const std::vector<DataBuffer> &inputs, const std::vector<DataBuffer> &outputs);
  108. Status SetInputConst();
  109. Status SetExtInfoAndType(const std::string &kernel_ext_info, uint64_t kernel_id);
  110. Status UpdateExtInfo(const std::vector<GeTensorDesc> &input_desc,
  111. std::vector<GeTensorDesc> &output_desc,
  112. rtStream_t stream);
  113. Status UpdateOutputShape(vector<GeTensorDesc> &output_desc);
  114. Status UpdateShapeToOutputDesc(const GeShape &shape_new, GeTensorDesc &output_desc);
  115. protected:
  116. size_t num_inputs_ = 0;
  117. size_t num_outputs_ = 0;
  118. UnknowShapeOpType unknown_type_ = DEPEND_IN_SHAPE;
  119. std::unique_ptr<ge::hybrid::AicpuExtInfoHandler> aicpu_ext_handle_;
  120. void *ext_info_addr_dev_ = nullptr;
  121. vector<bool> input_is_const_;
  122. };
  123. class AiCpuTask : public AiCpuBaseTask {
  124. public:
  125. AiCpuTask() = default;
  126. ~AiCpuTask() override;
  127. Status LaunchKernel(rtStream_t stream) override;
  128. void GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) override;
  129. Status LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
  130. const std::vector<DataBuffer> &input_buffers,
  131. std::vector<GeTensorDesc> &output_desc,
  132. std::vector<DataBuffer> &output_buffers,
  133. rtStream_t stream) override;
  134. Status SetMemCopyTask(const domi::KernelExDef &kernel_def);
  135. private:
  136. // for copy task.
  137. Status InitForSummaryAndCopy();
  138. Status UpdateShapeAndDataByResultSummary(vector<GeTensorDesc> &output_desc,
  139. vector<DataBuffer> &outputs,
  140. rtStream_t stream);
  141. Status ReadResultSummaryAndPrepareMemory();
  142. Status CopyDataToHbm(vector<DataBuffer> &outputs, rtStream_t stream);
  143. Status PrepareCopyInputs(vector<DataBuffer> &outputs);
  144. Status UpdateShapeByHbmBuffer(vector<GeTensorDesc> &output_desc);
  145. friend class AiCpuTaskBuilder;
  146. void *workspace_addr_ = nullptr;
  147. std::string task_info_;
  148. // device addr
  149. void *args_ = nullptr;
  150. size_t arg_size_ = 0;
  151. std::string op_type_;
  152. // device addr
  153. void *io_addr_ = nullptr;
  154. size_t io_addr_size_ = 0;
  155. // host addr
  156. std::vector<void *> io_addr_host_;
  157. bool dynamic_flag_ = false;
  158. // for copy task
  159. void *copy_task_args_buf_ = nullptr;
  160. void *copy_workspace_buf_ = nullptr;
  161. std::vector<void *> output_summary_;
  162. std::vector<aicpu::FWKAdapter::ResultSummary> output_summary_host_;
  163. void *copy_ioaddr_dev_ = nullptr;
  164. void *copy_input_release_flag_dev_ = nullptr;
  165. void *copy_input_data_size_dev_ = nullptr;
  166. void *copy_input_src_dev_ = nullptr;
  167. void *copy_input_dst_dev_ = nullptr;
  168. vector<void *> out_shape_hbm_;
  169. uint64_t kernel_id_ = 0;
  170. };
  171. class AiCpuCCTask : public AiCpuBaseTask {
  172. public:
  173. AiCpuCCTask() = default;
  174. ~AiCpuCCTask() override;
  175. AiCpuCCTask(const AiCpuCCTask &) = delete;
  176. AiCpuCCTask &operator=(const AiCpuCCTask &) = delete;
  177. Status LaunchKernel(rtStream_t stream) override;
  178. void GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) override;
  179. const void *GetArgs() const;
  180. void SetKernelArgs(std::unique_ptr<uint8_t[]> args, size_t arg_size);
  181. void SetSoName(const std::string &so_name);
  182. void SetkernelName(const std::string &kernel_Name);
  183. void SetIoAddr(uintptr_t *io_addr);
  184. size_t GetArgSize() const;
  185. Status LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
  186. const std::vector<DataBuffer> &input_buffers,
  187. std::vector<GeTensorDesc> &output_desc,
  188. std::vector<DataBuffer> &output_buffers,
  189. rtStream_t stream) override;
  190. private:
  191. friend class AiCpuCCTaskBuilder;
  192. std::string so_name_;
  193. std::string kernel_name_;
  194. std::unique_ptr<uint8_t[]> args_;
  195. size_t arg_size_ = 0;
  196. void *sm_desc_ = nullptr;
  197. uintptr_t *io_addr_ = nullptr;
  198. size_t io_addr_num_ = 0;
  199. bool is_custom_ = false;
  200. uint32_t dump_flag_ = RT_KERNEL_DEFAULT;
  201. std::string op_type_;
  202. uint64_t kernel_id_ = 0;
  203. };
  204. } // namespace ge
  205. #endif // GE_SINGLE_OP_TASK_OP_TASK_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示