You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

aicpu_constant_folding_pass.cc 28 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "graph/passes/aicpu_constant_folding_pass.h"
  17. #include <memory>
  18. #include <vector>
  19. #include "common/debug/log.h"
  20. #include "common/ge/ge_util.h"
  21. #include "common/types.h"
  22. #include "framework/common/debug/ge_log.h"
  23. #include "graph/debug/ge_attr_define.h"
  24. #include "graph/utils/attr_utils.h"
  25. #include "graph/utils/node_utils.h"
  26. #include "graph/utils/op_desc_utils.h"
  27. #include "graph/utils/type_utils.h"
  28. #include "init/gelib.h"
  29. #include "opskernel_manager/ops_kernel_builder_manager.h"
  30. namespace {
  31. const char *const kKernelLibName = "aicpu_tf_kernel";
  32. const char *const kNotSupported = "0";
  33. const uint64_t kReleaseFlag = 1;
  34. const uint64_t kOpsFlag = 1;
  35. const uint64_t kDouble = 2;
  36. } // namespace
  37. namespace ge {
  38. Status AicpuConstantFoldingPass::Run(ge::NodePtr &node) {
  39. GE_CHECK_NOTNULL(node);
  40. GELOGD("Start aicpu constant folding on node [%s]", node->GetName().c_str());
  41. if (IsSkipFold(node)) {
  42. return SUCCESS;
  43. }
  44. vector<ConstGeTensorPtr> weight_vec;
  45. bool flag = CheckInput(node, weight_vec);
  46. if (!flag) {
  47. return SUCCESS;
  48. }
  49. OpDescPtr node_desc = node->GetOpDesc(); // checked before
  50. vector<DataPtrInfo> data_vec;
  51. vector<AddrAndType> input_addrs;
  52. vector<uint64_t> output_addrs;
  53. Status ret = GetInputAddrs(weight_vec, input_addrs);
  54. if (ret != SUCCESS) {
  55. ReleaseMemory(input_addrs, output_addrs, data_vec);
  56. return SUCCESS;
  57. }
  58. ret = GetOutputAddrs(node_desc, output_addrs);
  59. if (ret != SUCCESS) {
  60. ReleaseMemory(input_addrs, output_addrs, data_vec);
  61. return SUCCESS;
  62. }
  63. ret = LaunchSingleOpRunTask(node, input_addrs, output_addrs);
  64. if (ret != SUCCESS) {
  65. ReleaseMemory(input_addrs, output_addrs, data_vec);
  66. return SUCCESS;
  67. }
  68. GELOGI("[Node:%s] Launch singleOpRunTask success", node->GetName().c_str());
  69. vector<uint64_t> data_infos;
  70. ret = GenerateDataPtrInfo(output_addrs, data_vec, data_infos);
  71. if (ret != SUCCESS) {
  72. ReleaseMemory(input_addrs, output_addrs, data_vec);
  73. return SUCCESS;
  74. }
  75. GELOGI("[Node:%s] Generate dataPtrInfo success", node->GetName().c_str());
  76. ret = LaunchMemCopyTask(data_infos);
  77. if (ret != SUCCESS) {
  78. ReleaseMemory(input_addrs, output_addrs, data_vec);
  79. return SUCCESS;
  80. }
  81. GELOGI("[Node:%s] Launch memCopyTask success", node->GetName().c_str());
  82. vector<GeTensorPtr> outputs;
  83. ret = GenerateGeTensor(node_desc, data_vec, outputs);
  84. if (ret != SUCCESS) {
  85. ReleaseMemory(input_addrs, output_addrs, data_vec);
  86. return SUCCESS;
  87. }
  88. ReleaseMemory(input_addrs, output_addrs, data_vec);
  89. GELOGI("[Node:%s] Generate geTensor success", node->GetName().c_str());
  90. return Folding(node, outputs);
  91. }
  92. bool AicpuConstantFoldingPass::CheckInput(const NodePtr &node, vector<ConstGeTensorPtr> &weight_vec) {
  93. OpDescPtr node_desc = node->GetOpDesc();
  94. if (node_desc == nullptr) {
  95. GELOGW("Opdesc of %s is null", node->GetName().c_str());
  96. return false;
  97. }
  98. DataType data_type = node_desc->GetOutputDesc(0).GetDataType();
  99. Format format = node_desc->GetOutputDesc(0).GetFormat();
  100. GELOGD("Current [node:%s, type:%s] info: format: %s, datatype:%s", node->GetName().c_str(), node->GetType().c_str(),
  101. TypeUtils::FormatToSerialString(format).c_str(), TypeUtils::DataTypeToSerialString(data_type).c_str());
  102. auto input_nodes = OpDescUtils::GetConstInputNode(*node);
  103. if (input_nodes.empty() || input_nodes.size() != node_desc->GetInputsSize()) {
  104. GELOGD("Const input nodes size is %zu, and nodeDesc inputsSize is %zu, skip fold.", input_nodes.size(),
  105. node_desc->GetInputsSize());
  106. return false;
  107. }
  108. weight_vec = OpDescUtils::GetInputData(input_nodes);
  109. return true;
  110. }
  111. Status AicpuConstantFoldingPass::GetInputAddrs(const vector<ConstGeTensorPtr> &weight_vec,
  112. vector<AddrAndType> &input_addrs) {
  113. if (weight_vec.empty()) {
  114. REPORT_INNER_ERROR("E19999", "Param weight_vec is empty, check invalid when AicpuConstantFoldingPass :%s",
  115. __FUNCTION__);
  116. GELOGE(FAILED, "Weight is null");
  117. return FAILED;
  118. }
  119. for (const ConstGeTensorPtr &weight : weight_vec) {
  120. void *input_addr = nullptr;
  121. GE_CHK_RT_RET(rtMalloc(&input_addr, weight->GetData().size(), RT_MEMORY_HBM));
  122. rtError_t rt_ret = rtMemcpy(input_addr, weight->GetData().size(), weight->GetData().data(),
  123. weight->GetData().size(), RT_MEMCPY_HOST_TO_DEVICE);
  124. if (rt_ret != RT_ERROR_NONE) {
  125. REPORT_CALL_ERROR("E19999", "Call rtMemcpy failed, size:%zu, ret = 0x%X, when AicpuConstantFoldingPass %s",
  126. weight->GetData().size(), rt_ret, __FUNCTION__);
  127. GELOGE(rt_ret, "rtMemcpy error");
  128. GE_CHK_RT(rtFree(input_addr));
  129. return FAILED;
  130. }
  131. AddrAndType input_info = {static_cast<uint64_t>(reinterpret_cast<uintptr_t>(input_addr)), kData};
  132. input_addrs.emplace_back(input_info);
  133. }
  134. return SUCCESS;
  135. }
  136. Status AicpuConstantFoldingPass::GetOutputAddrs(const OpDescPtr &node_desc, vector<uint64_t> &output_addrs) {
  137. if (node_desc->GetOutputsSize() == 0) {
  138. REPORT_INNER_ERROR("E19999", "Ouput desc size of op:%s(%s) is 0, check invalid when AicpuConstantFoldingPass :%s",
  139. node_desc->GetName().c_str(), node_desc->GetType().c_str(), __FUNCTION__);
  140. GELOGE(FAILED, "Output size is 0 ");
  141. return FAILED;
  142. }
  143. for (size_t i = 0; i < node_desc->GetOutputsSize(); ++i) {
  144. void *summary_addr = nullptr;
  145. GE_CHK_RT_RET(rtMalloc(&summary_addr, sizeof(aicpu::FWKAdapter::ResultSummary), RT_MEMORY_HBM));
  146. output_addrs.emplace_back(static_cast<uint64_t>(reinterpret_cast<uintptr_t>(summary_addr)));
  147. }
  148. return SUCCESS;
  149. }
  150. Status AicpuConstantFoldingPass::GenerateDataPtrInfo(const vector<uint64_t> &output_addrs,
  151. vector<DataPtrInfo> &data_vec, vector<uint64_t> &data_infos) {
  152. for (uint64_t output_addr : output_addrs) {
  153. aicpu::FWKAdapter::ResultSummary result_summary;
  154. GE_CHK_RT_RET(rtMemcpy(&result_summary, sizeof(aicpu::FWKAdapter::ResultSummary),
  155. reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(output_addr)),
  156. sizeof(aicpu::FWKAdapter::ResultSummary), RT_MEMCPY_DEVICE_TO_HOST));
  157. void *raw_data_addr = nullptr;
  158. GE_CHK_RT_RET(rtMalloc(&raw_data_addr, result_summary.raw_data_size, RT_MEMORY_HBM));
  159. void *shape_data_addr = nullptr;
  160. // shape_data_size = 0 means scalar
  161. if (result_summary.shape_data_size != 0) {
  162. rtError_t rt_ret = rtMalloc(&shape_data_addr, result_summary.shape_data_size, RT_MEMORY_HBM);
  163. if (rt_ret != RT_ERROR_NONE) {
  164. REPORT_CALL_ERROR("E19999", "Call rtMalloc failed, size:%lu, ret = 0x%X, when AicpuConstantFoldingPass %s",
  165. result_summary.shape_data_size, rt_ret, __FUNCTION__);
  166. GELOGE(rt_ret, "rtMalloc error");
  167. GE_CHK_RT(rtFree(raw_data_addr));
  168. return FAILED;
  169. }
  170. }
  171. DataPtrInfo raw_data_info;
  172. raw_data_info.release_flag = kReleaseFlag;
  173. raw_data_info.data_size = result_summary.raw_data_size;
  174. raw_data_info.src_ptr = result_summary.raw_data_ptr;
  175. raw_data_info.dst_ptr = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(raw_data_addr));
  176. data_vec.emplace_back(raw_data_info);
  177. DataPtrInfo shape_data_info;
  178. shape_data_info.release_flag = kReleaseFlag;
  179. shape_data_info.data_size = result_summary.shape_data_size;
  180. shape_data_info.src_ptr = result_summary.shape_data_ptr;
  181. shape_data_info.dst_ptr = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(shape_data_addr));
  182. data_vec.emplace_back(shape_data_info);
  183. }
  184. for (const DataPtrInfo &data_info : data_vec) {
  185. data_infos.emplace_back(static_cast<uint64_t>(reinterpret_cast<uintptr_t>(&data_info)));
  186. }
  187. return SUCCESS;
  188. }
  189. Status AicpuConstantFoldingPass::UpdateWorkSpaceAddr(string &task_info, STR_FWK_OP_KERNEL &task) {
  190. // Update the workspace_addr
  191. if (task_info.empty()) {
  192. REPORT_INNER_ERROR("E19999", "Param task_info is empty, check invalid when AicpuConstantFoldingPass :%s",
  193. __FUNCTION__);
  194. GELOGE(FAILED, "task_info is empty ");
  195. return FAILED;
  196. }
  197. void *workspace_addr = nullptr;
  198. GE_CHK_RT_RET(rtMalloc(&workspace_addr, task_info.size(), RT_MEMORY_HBM));
  199. rtError_t rt_ret =
  200. rtMemcpy(workspace_addr, task_info.size(), task_info.data(), task_info.size(), RT_MEMCPY_HOST_TO_DEVICE);
  201. if (rt_ret != RT_ERROR_NONE) {
  202. REPORT_CALL_ERROR("E19999", "Call rtMemcpy failed, size:%zu, ret = 0x%X, when AicpuConstantFoldingPass %s",
  203. task_info.size(), rt_ret, __FUNCTION__);
  204. GELOGE(rt_ret, "rtMemcpy error");
  205. GE_CHK_RT(rtFree(workspace_addr));
  206. return FAILED;
  207. }
  208. uint64_t workspace_base_addr = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(workspace_addr));
  209. task.fwkKernelBase.fwk_kernel.workspaceBaseAddr = workspace_base_addr;
  210. return SUCCESS;
  211. }
  212. Status AicpuConstantFoldingPass::UpdateInputAndOutputAddr(const vector<uint64_t> &io_addrs, STR_FWK_OP_KERNEL &task) {
  213. auto addrs_size = sizeof(uint64_t) * (io_addrs.size());
  214. if (addrs_size <= 0) {
  215. REPORT_INNER_ERROR("E19999", "Param io_addrs size is 0, check invalid when AicpuConstantFoldingPass :%s",
  216. __FUNCTION__);
  217. GELOGE(FAILED, "addrs_size is less than 1 ");
  218. return FAILED;
  219. }
  220. void *input_output_addr = nullptr;
  221. GE_CHK_RT_RET(rtMalloc(&input_output_addr, addrs_size, RT_MEMORY_HBM));
  222. rtError_t rt_ret = rtMemcpy(input_output_addr, addrs_size, io_addrs.data(), addrs_size, RT_MEMCPY_HOST_TO_DEVICE);
  223. if (rt_ret != RT_ERROR_NONE) {
  224. REPORT_CALL_ERROR("E19999", "Call rtMemcpy failed, size:%zu, ret = 0x%X, when AicpuConstantFoldingPass %s",
  225. addrs_size, rt_ret, __FUNCTION__);
  226. GELOGE(rt_ret, "rtMemcpy error");
  227. GE_CHK_RT(rtFree(input_output_addr));
  228. return FAILED;
  229. }
  230. uint64_t in_out_addr = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(input_output_addr));
  231. task.fwkKernelBase.fwk_kernel.inputOutputAddr = in_out_addr;
  232. return SUCCESS;
  233. }
  234. Status AicpuConstantFoldingPass::UpdateSingleOpAddr(string &task_info, const vector<AddrAndType> &input_addrs,
  235. const vector<uint64_t> &outputs_addr_vec, STR_FWK_OP_KERNEL &task) {
  236. // Build the SingleOpAddr
  237. vector<uint64_t> inputs_addr_vec;
  238. for (const auto &item : input_addrs) {
  239. inputs_addr_vec.push_back(item.input_addr);
  240. }
  241. vector<uint64_t> io_addrs;
  242. io_addrs.insert(io_addrs.end(), inputs_addr_vec.begin(), inputs_addr_vec.end());
  243. io_addrs.insert(io_addrs.end(), outputs_addr_vec.begin(), outputs_addr_vec.end());
  244. Status ret = UpdateInputAndOutputAddr(io_addrs, task);
  245. if (ret != SUCCESS) {
  246. GELOGE(ret, "UpdateInputAndOutputAddr error");
  247. return ret;
  248. }
  249. ret = UpdateWorkSpaceAddr(task_info, task);
  250. if (ret != SUCCESS) {
  251. GELOGE(ret, "UpdateWorkSpaceAddr error");
  252. return ret;
  253. }
  254. return SUCCESS;
  255. }
  256. Status AicpuConstantFoldingPass::UpdateMemCopyAddr(string &task_info, const vector<uint64_t> &data_infos,
  257. vector<uint64_t> &internal_addrs, STR_FWK_OP_KERNEL &task) {
  258. vector<uint64_t> release_flags;
  259. vector<uint64_t> data_sizes;
  260. vector<uint64_t> src_addrs;
  261. vector<uint64_t> dst_addrs;
  262. for (auto item : data_infos) {
  263. auto *data_info_ptr = reinterpret_cast<DataPtrInfo *>(reinterpret_cast<uintptr_t>(item)); // pointer cannot be null
  264. release_flags.push_back(data_info_ptr->release_flag);
  265. data_sizes.push_back(data_info_ptr->data_size);
  266. src_addrs.push_back(data_info_ptr->src_ptr);
  267. dst_addrs.push_back(data_info_ptr->dst_ptr);
  268. }
  269. vector<vector<uint64_t>> inputs = {release_flags, data_sizes, src_addrs, dst_addrs};
  270. auto data_size = sizeof(uint64_t) * (data_infos.size());
  271. vector<uint64_t> io_addrs;
  272. if (data_infos.size() > 0) {
  273. for (const auto &item : inputs) {
  274. void *input_addr_ptr = nullptr;
  275. GE_CHK_RT_RET(rtMalloc(&input_addr_ptr, data_size, RT_MEMORY_HBM));
  276. rtError_t rt_ret = rtMemcpy(input_addr_ptr, data_size, item.data(), data_size, RT_MEMCPY_HOST_TO_DEVICE);
  277. if (rt_ret != RT_ERROR_NONE) {
  278. REPORT_CALL_ERROR("E19999", "Call rtMemcpy failed, size:%zu, ret = 0x%X, when AicpuConstantFoldingPass %s",
  279. data_size, rt_ret, __FUNCTION__);
  280. GELOGE(rt_ret, "rtMemcpy error");
  281. GE_CHK_RT(rtFree(input_addr_ptr));
  282. return FAILED;
  283. }
  284. uint64_t input_addr = static_cast<uint64_t>(reinterpret_cast<uintptr_t>(input_addr_ptr));
  285. io_addrs.push_back(input_addr);
  286. }
  287. }
  288. internal_addrs = io_addrs;
  289. Status ret = UpdateInputAndOutputAddr(io_addrs, task);
  290. if (ret != SUCCESS) {
  291. GELOGE(ret, "UpdateInputAndOutputAddr error");
  292. return ret;
  293. }
  294. ret = UpdateWorkSpaceAddr(task_info, task);
  295. if (ret != SUCCESS) {
  296. GELOGE(ret, "UpdateWorkSpaceAddr error");
  297. return ret;
  298. }
  299. return SUCCESS;
  300. }
  301. Status AicpuConstantFoldingPass::LaunchSingleOpRunTask(const NodePtr &node, const vector<AddrAndType> &input_addrs,
  302. const vector<uint64_t> &output_addrs) {
  303. void *task_buf = nullptr;
  304. auto instance_ptr = ge::GELib::GetInstance();
  305. if (instance_ptr == nullptr || !instance_ptr->InitFlag()) {
  306. REPORT_INNER_ERROR("E19999", "GeLib is not init before, check invalid when AicpuConstantFoldingPass %s",
  307. __FUNCTION__);
  308. GELOGE(GE_CLI_GE_NOT_INITIALIZED, "GE is not initialized");
  309. return GE_CLI_GE_NOT_INITIALIZED;
  310. }
  311. auto kernel_builder = OpsKernelBuilderManager::Instance().GetOpsKernelBuilder(kKernelLibName);
  312. if (kernel_builder == nullptr) {
  313. REPORT_INNER_ERROR("E19999", "Find ops kernel by name:%s failed, when AicpuConstantFoldingPass %s",
  314. kKernelLibName, __FUNCTION__);
  315. GELOGE(FAILED, "Get op kernel info store failed");
  316. return FAILED;
  317. }
  318. STR_FWK_OP_KERNEL aicpu_task;
  319. aicpu_task.fwkKernelBase.fwk_kernel.inputOutputAddr = 0;
  320. aicpu_task.fwkKernelBase.fwk_kernel.workspaceBaseAddr = 0;
  321. aicpu_task.fwkKernelBase.fwk_kernel.extInfoAddr = 0;
  322. aicpu_task.fwkKernelBase.fwk_kernel.extInfoLen = 0;
  323. std::string task_info;
  324. Status ret = kernel_builder->GenSingleOpRunTask(node, aicpu_task, task_info);
  325. if (ret != SUCCESS) {
  326. return ret;
  327. }
  328. std::function<void()> callback = [&]() {
  329. void *input_output_ptr =
  330. reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(aicpu_task.fwkKernelBase.fwk_kernel.inputOutputAddr));
  331. if (input_output_ptr != nullptr) {
  332. GE_CHK_RT(rtFree(input_output_ptr));
  333. }
  334. void *workspace_addr_ptr =
  335. reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(aicpu_task.fwkKernelBase.fwk_kernel.workspaceBaseAddr));
  336. if (workspace_addr_ptr != nullptr) {
  337. GE_CHK_RT(rtFree(workspace_addr_ptr));
  338. }
  339. };
  340. GE_MAKE_GUARD(release, callback);
  341. ret = UpdateSingleOpAddr(task_info, input_addrs, output_addrs, aicpu_task);
  342. if (ret != SUCCESS) {
  343. GELOGE(ret, "UpdateSingleOpAddr error");
  344. return ret;
  345. }
  346. ret = GenerateTaskForLaunch(aicpu_task, task_buf);
  347. if (ret != SUCCESS) {
  348. GELOGE(ret, "GenerateTaskForLaunch error");
  349. return ret;
  350. }
  351. ret = KernelLaunch(task_buf);
  352. if (ret != SUCCESS) {
  353. GELOGE(ret, "KernelLaunch error");
  354. return ret;
  355. }
  356. return SUCCESS;
  357. }
  358. Status AicpuConstantFoldingPass::LaunchMemCopyTask(const vector<uint64_t> &data_infos) {
  359. void *task_buf = nullptr;
  360. auto instance_ptr = ge::GELib::GetInstance();
  361. if (instance_ptr == nullptr || !instance_ptr->InitFlag()) {
  362. REPORT_INNER_ERROR("E19999", "GeLib is not init before, check invalid when AicpuConstantFoldingPass %s",
  363. __FUNCTION__);
  364. GELOGE(GE_CLI_GE_NOT_INITIALIZED, "GE is not initialized");
  365. return GE_CLI_GE_NOT_INITIALIZED;
  366. }
  367. auto kernel_builder = OpsKernelBuilderManager::Instance().GetOpsKernelBuilder(kKernelLibName);
  368. if (kernel_builder == nullptr) {
  369. REPORT_INNER_ERROR("E19999", "Find ops kernel by name:%s failed, when AicpuConstantFoldingPass %s",
  370. kKernelLibName, __FUNCTION__);
  371. GELOGE(FAILED, "Get op kernel info store failed");
  372. return FAILED;
  373. }
  374. STR_FWK_OP_KERNEL aicpu_task;
  375. aicpu_task.fwkKernelBase.fwk_kernel.inputOutputAddr = 0;
  376. aicpu_task.fwkKernelBase.fwk_kernel.workspaceBaseAddr = 0;
  377. aicpu_task.fwkKernelBase.fwk_kernel.extInfoAddr = 0;
  378. aicpu_task.fwkKernelBase.fwk_kernel.extInfoLen = 0;
  379. std::string task_info;
  380. Status ret = kernel_builder->GenMemCopyTask(data_infos.size(), aicpu_task, task_info);
  381. if (ret != SUCCESS) {
  382. return ret;
  383. }
  384. vector<uint64_t> internal_addrs;
  385. std::function<void()> callback = [&]() {
  386. for (auto item : internal_addrs) {
  387. GE_CHK_RT(rtFree(reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(item)))); // pointer cannot be null
  388. }
  389. void *input_output_ptr =
  390. reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(aicpu_task.fwkKernelBase.fwk_kernel.inputOutputAddr));
  391. if (input_output_ptr != nullptr) {
  392. GE_CHK_RT(rtFree(input_output_ptr));
  393. }
  394. void *workspace_addr_ptr =
  395. reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(aicpu_task.fwkKernelBase.fwk_kernel.workspaceBaseAddr));
  396. if (workspace_addr_ptr != nullptr) {
  397. GE_CHK_RT(rtFree(workspace_addr_ptr));
  398. }
  399. };
  400. GE_MAKE_GUARD(release, callback);
  401. ret = UpdateMemCopyAddr(task_info, data_infos, internal_addrs, aicpu_task);
  402. if (ret != SUCCESS) {
  403. GELOGE(ret, "UpdateMemCopyAddr error");
  404. return ret;
  405. }
  406. ret = GenerateTaskForLaunch(aicpu_task, task_buf);
  407. if (ret != SUCCESS) {
  408. GELOGE(ret, "GenerateTaskForLaunch error");
  409. return ret;
  410. }
  411. ret = KernelLaunch(task_buf);
  412. if (ret != SUCCESS) {
  413. GELOGE(ret, "KernelLaunch error");
  414. return ret;
  415. }
  416. return SUCCESS;
  417. }
  418. Status AicpuConstantFoldingPass::GenerateTaskForLaunch(STR_FWK_OP_KERNEL &aicpu_task, void *&task_buf) {
  419. GE_CHK_RT_RET(rtMalloc(&task_buf, sizeof(STR_FWK_OP_KERNEL), RT_MEMORY_HBM));
  420. rtError_t rt_ret = rtMemcpy(task_buf, sizeof(STR_FWK_OP_KERNEL), reinterpret_cast<void *>(&aicpu_task),
  421. sizeof(STR_FWK_OP_KERNEL), RT_MEMCPY_HOST_TO_DEVICE);
  422. if (rt_ret != RT_ERROR_NONE) {
  423. REPORT_CALL_ERROR("E19999", "Call rtMemcpy failed, size:%zu, ret = 0x%X, when AicpuConstantFoldingPass %s",
  424. sizeof(STR_FWK_OP_KERNEL), rt_ret, __FUNCTION__);
  425. GELOGE(rt_ret, "rtMemcpy error");
  426. GE_CHK_RT(rtFree(task_buf));
  427. return FAILED;
  428. }
  429. return SUCCESS;
  430. }
  431. Status AicpuConstantFoldingPass::KernelLaunch(void *task_buf) {
  432. rtModel_t model = nullptr;
  433. rtStream_t stream = nullptr;
  434. rtStream_t stream_run = nullptr;
  435. std::function<void()> callback = [&]() {
  436. if (task_buf != nullptr) {
  437. GE_CHK_RT(rtFree(task_buf));
  438. }
  439. if (model != nullptr) {
  440. GE_CHK_RT(rtModelDestroy(model));
  441. }
  442. if (stream != nullptr) {
  443. GE_CHK_RT(rtStreamDestroy(stream));
  444. }
  445. if (stream_run != nullptr) {
  446. GE_CHK_RT(rtStreamDestroy(stream_run));
  447. }
  448. };
  449. GE_MAKE_GUARD(release, callback);
  450. rtError_t rt_ret = rtModelCreate(&model, 0);
  451. if (rt_ret != RT_ERROR_NONE) {
  452. REPORT_CALL_ERROR("E19999", "Call rtModelCreate failed, ret = 0x%X, when AicpuConstantFoldingPass %s",
  453. rt_ret, __FUNCTION__);
  454. GELOGE(rt_ret, "create model failed.");
  455. return FAILED;
  456. }
  457. rt_ret = rtStreamCreate(&stream, 0);
  458. if (rt_ret != RT_ERROR_NONE) {
  459. REPORT_CALL_ERROR("E19999", "Call rtStreamCreate failed, ret = 0x%X, when AicpuConstantFoldingPass %s",
  460. rt_ret, __FUNCTION__);
  461. GELOGE(rt_ret, "create stream failed.");
  462. return FAILED;
  463. }
  464. rt_ret = rtModelBindStream(model, stream, 0);
  465. if (rt_ret != RT_ERROR_NONE) {
  466. REPORT_CALL_ERROR("E19999", "Call rtModelBindStream failed, ret = 0x%X, when AicpuConstantFoldingPass %s",
  467. rt_ret, __FUNCTION__);
  468. GELOGE(rt_ret, "rtModelBindStream failed.");
  469. return FAILED;
  470. }
  471. rt_ret = rtKernelLaunchEx(task_buf, sizeof(STR_FWK_OP_KERNEL), 0, stream);
  472. if (rt_ret != RT_ERROR_NONE) {
  473. REPORT_CALL_ERROR("E19999", "Call rtModelBindStream failed, ret = 0x%X, when AicpuConstantFoldingPass %s",
  474. rt_ret, __FUNCTION__);
  475. GELOGE(rt_ret, "rtKernelLaunchEx failed.");
  476. return FAILED;
  477. }
  478. rt_ret = rtModelLoadComplete(model);
  479. if (rt_ret != RT_ERROR_NONE) {
  480. REPORT_CALL_ERROR("E19999", "Call rtModelLoadComplete failed, ret = 0x%X, when AicpuConstantFoldingPass %s",
  481. rt_ret, __FUNCTION__);
  482. GELOGE(rt_ret, "rtModelLoadComplete failed.");
  483. return FAILED;
  484. }
  485. rt_ret = rtStreamCreate(&stream_run, 0);
  486. if (rt_ret != RT_ERROR_NONE) {
  487. REPORT_CALL_ERROR("E19999", "Call rtStreamCreate failed, ret = 0x%X, when AicpuConstantFoldingPass %s",
  488. rt_ret, __FUNCTION__);
  489. GELOGE(rt_ret, "create run stream failed.");
  490. return FAILED;
  491. }
  492. rt_ret = rtModelExecute(model, stream_run, 0);
  493. if (rt_ret != RT_ERROR_NONE) {
  494. REPORT_CALL_ERROR("E19999", "Call rtModelExecute failed, ret = 0x%X, when AicpuConstantFoldingPass %s",
  495. rt_ret, __FUNCTION__);
  496. GELOGE(rt_ret, "rtModelExecute failed.");
  497. return FAILED;
  498. }
  499. rt_ret = rtStreamSynchronize(stream_run);
  500. if (rt_ret != RT_ERROR_NONE) {
  501. REPORT_CALL_ERROR("E19999", "Call rtStreamSynchronize failed, ret = 0x%X, when AicpuConstantFoldingPass %s",
  502. rt_ret, __FUNCTION__);
  503. GELOGE(rt_ret, "rtStreamSynchronize failed.");
  504. return FAILED;
  505. }
  506. return SUCCESS;
  507. }
  508. Status AicpuConstantFoldingPass::GenerateGeTensor(const OpDescPtr &node_desc, const vector<DataPtrInfo> &data_vec,
  509. vector<GeTensorPtr> &outputs) {
  510. if ((node_desc->GetOutputsSize() * kDouble) != data_vec.size()) {
  511. REPORT_INNER_ERROR("E19999", "Output desc size:%zu of op:%s(%s), after multi 2, not equal to data_vec.size:%zu, "
  512. "check invalid when AicpuConstantFoldingPass %s", node_desc->GetOutputsSize(),
  513. node_desc->GetName().c_str(), node_desc->GetType().c_str(), data_vec.size(), __FUNCTION__);
  514. GELOGE(FAILED, "node[%s] something wrong with output size", node_desc->GetName().c_str());
  515. return FAILED;
  516. }
  517. for (size_t i = 0; i < node_desc->GetOutputsSize(); i++) {
  518. auto output_tensor_desc = node_desc->GetOutputDesc(static_cast<uint32_t>(i));
  519. GeTensorPtr output_ptr = MakeShared<GeTensor>(output_tensor_desc);
  520. if (output_ptr == nullptr) {
  521. REPORT_CALL_ERROR("E19999", "New GeTensor failed when AicpuConstantFoldingPass %s", __FUNCTION__);
  522. GELOGE(FAILED, "node[%s] something wrong with construct GeTensor", node_desc->GetName().c_str());
  523. return FAILED;
  524. }
  525. const DataPtrInfo &raw_data_info = data_vec.at(i * kDouble);
  526. uint64_t raw_data_size = raw_data_info.data_size;
  527. std::unique_ptr<uint8_t[]> data_addr(new (std::nothrow) uint8_t[raw_data_size]());
  528. if (data_addr == nullptr) {
  529. REPORT_CALL_ERROR("E19999", "New Buffer failed, size:%lu, when AicpuConstantFoldingPass %s",
  530. raw_data_size, __FUNCTION__);
  531. GELOGE(MEMALLOC_FAILED, "new data_addr failed");
  532. return INTERNAL_ERROR;
  533. }
  534. GE_CHK_RT_RET(rtMemcpy(data_addr.get(), raw_data_size,
  535. reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(raw_data_info.dst_ptr)), raw_data_size,
  536. RT_MEMCPY_DEVICE_TO_HOST));
  537. GE_IF_BOOL_EXEC(output_ptr->SetData(data_addr.get(), raw_data_size) != GRAPH_SUCCESS,
  538. GELOGE(FAILED, "set data failed");
  539. return FAILED);
  540. GELOGD("GenerateGeTensor: raw_data_size %lu", raw_data_size);
  541. const DataPtrInfo &shape_data_info = data_vec.at(i * kDouble + 1);
  542. uint64_t shape_data_size = shape_data_info.data_size;
  543. GELOGD("GenerateGeTensor: shape_data_size %lu", shape_data_size);
  544. if (shape_data_size == 0) {
  545. GELOGW("node[%s] outshape is scalar, skip copy shape", node_desc->GetName().c_str());
  546. output_ptr->MutableTensorDesc().SetShape(GeShape());
  547. outputs.emplace_back(output_ptr);
  548. continue;
  549. }
  550. uint64_t dim_num = shape_data_size / sizeof(uint64_t);
  551. std::unique_ptr<int64_t[]> shape_addr(new (std::nothrow) int64_t[dim_num]());
  552. if (shape_addr == nullptr) {
  553. REPORT_CALL_ERROR("E19999", "New Buffer failed, size:%lu, when AicpuConstantFoldingPass %s",
  554. dim_num, __FUNCTION__);
  555. GELOGE(MEMALLOC_FAILED, "new shape_addr failed");
  556. return INTERNAL_ERROR;
  557. }
  558. GE_CHK_RT_RET(rtMemcpy(shape_addr.get(), shape_data_size,
  559. reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(shape_data_info.dst_ptr)),
  560. shape_data_size, RT_MEMCPY_DEVICE_TO_HOST));
  561. std::vector<int64_t> shape_dims;
  562. for (size_t j = 0; j < dim_num; j++) {
  563. shape_dims.push_back(shape_addr[j]);
  564. GELOGD("GenerateGeTensor: dim %ld", shape_addr[j]);
  565. }
  566. output_ptr->MutableTensorDesc().SetShape(GeShape(shape_dims));
  567. outputs.emplace_back(output_ptr);
  568. }
  569. return SUCCESS;
  570. }
  571. void AicpuConstantFoldingPass::ReleaseMemory(const vector<AddrAndType> &input_addrs,
  572. const vector<uint64_t> &output_addrs,
  573. const vector<DataPtrInfo> &data_vec) {
  574. for (const auto &item : input_addrs) {
  575. GE_CHK_RT(rtFree(reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(item.input_addr))));
  576. }
  577. for (auto item : output_addrs) {
  578. GE_CHK_RT(rtFree(reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(item))));
  579. }
  580. for (const auto &item : data_vec) {
  581. auto dst_ptr = reinterpret_cast<void *>(reinterpret_cast<uintptr_t>(item.dst_ptr));
  582. if (dst_ptr != nullptr) {
  583. GE_CHK_RT(rtFree(dst_ptr));
  584. }
  585. }
  586. }
  587. bool AicpuConstantFoldingPass::IsSkipFold(const ge::NodePtr &node) {
  588. GE_CHECK_NOTNULL(node);
  589. string type = node->GetType();
  590. if (type == ge::FRAMEWORKOP) {
  591. if (!ge::AttrUtils::GetStr(node->GetOpDesc(), ge::ATTR_NAME_FRAMEWORK_ORIGINAL_TYPE, type)) {
  592. GELOGW("Skip aicpu constant folding on frameworkop node [%s]", node->GetName().c_str());
  593. return true;
  594. }
  595. }
  596. auto instance_ptr = ge::GELib::GetInstance();
  597. if (instance_ptr == nullptr || !instance_ptr->InitFlag()) {
  598. REPORT_INNER_ERROR("E19999", "GeLib is not init before, check invalid when AicpuConstantFoldingPass %s",
  599. __FUNCTION__);
  600. GELOGE(GE_CLI_GE_NOT_INITIALIZED, "GE is not initialized");
  601. return true;
  602. }
  603. OpsKernelInfoStorePtr kernel_info = instance_ptr->OpsKernelManagerObj().GetOpsKernelInfoStore(kKernelLibName);
  604. if (kernel_info == nullptr) {
  605. REPORT_INNER_ERROR("E19999", "Find ops kernel by name:%s failed, when AicpuConstantFoldingPass %s",
  606. kKernelLibName, __FUNCTION__);
  607. GELOGE(FAILED, "Get op kernel info store failed");
  608. return true;
  609. }
  610. std::string check_result;
  611. kernel_info->opsFlagCheck(*node, check_result);
  612. if (check_result.empty()) {
  613. REPORT_CALL_ERROR("E19999", "Call opsFlagCheck faled, ops kernel name:%s, op:%s(%s), "
  614. "when AicpuConstantFoldingPass %s", kKernelLibName,
  615. node->GetName().c_str(), node->GetType().c_str(), __FUNCTION__);
  616. GELOGE(FAILED, "Get op check_result failed");
  617. return true;
  618. }
  619. return check_result.substr(0, kOpsFlag) == kNotSupported;
  620. }
  621. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示