You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

single_op_model.cc 22 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "single_op/single_op_model.h"
  17. #include <atomic>
  18. #include <memory>
  19. #include <string>
  20. #include <vector>
  21. #include "framework/common/debug/ge_log.h"
  22. #include "graph/debug/ge_attr_define.h"
  23. #include "graph/load/model_manager/model_utils.h"
  24. #include "graph/utils/attr_utils.h"
  25. #include "graph/utils/graph_utils.h"
  26. #include "graph/utils/tensor_utils.h"
  27. #include "runtime/rt.h"
  28. #include "task/aicpu_task_builder.h"
  29. #include "task/aicpu_kernel_task_builder.h"
  30. #include "task/tbe_task_builder.h"
  31. #include "hybrid/executor/hybrid_model_executor.h"
  32. #include "hybrid/node_executor/node_executor.h"
  33. static std::atomic<std::uint64_t> aicpu_kernel_id(0);
  34. using domi::TaskDef;
  35. using std::unique_ptr;
  36. using std::vector;
  37. namespace ge {
  38. namespace {
  39. const size_t kDataOutputNum = 1;
  40. bool NeedHybridModel(GeModelPtr &ge_model) {
  41. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  42. int32_t kernel_task_num = 0;
  43. for (int i = 0; i < tasks.size(); ++i) {
  44. auto task_type = static_cast<rtModelTaskType_t>(tasks[i].type());
  45. if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) {
  46. kernel_task_num++;
  47. if (kernel_task_num > 1) {
  48. return true;
  49. }
  50. }
  51. }
  52. return false;
  53. }
  54. } // namespace
  55. SingleOpModel::SingleOpModel(const std::string &model_name, const void *model_data, uint32_t model_size)
  56. : model_name_(model_name), ori_model_data_(model_data), ori_model_size_(model_size) {}
  57. Status SingleOpModel::Init() {
  58. GE_CHK_STATUS_RET_NOLOG(InitModel());
  59. return LoadAllNodes();
  60. }
  61. Status SingleOpModel::InitModel() {
  62. ge::ModelData model;
  63. model.model_len = ori_model_size_;
  64. model.model_data = const_cast<void *>(ori_model_data_);
  65. auto ret = model_helper_.LoadModel(model);
  66. if (ret != SUCCESS) {
  67. GELOGE(ret, "LoadModel failed");
  68. return ret;
  69. }
  70. return SUCCESS;
  71. }
  72. void SingleOpModel::ParseOpModelParams(ModelHelper &model_helper, SingleOpModelParam &param) {
  73. int64_t value = 0;
  74. bool ret = false;
  75. std::shared_ptr<ge::GeModel> model = model_helper.GetGeModel();
  76. GE_CHECK_NOTNULL_JUST_RETURN(model);
  77. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_MEMORY_SIZE, value);
  78. param.memory_size = ret ? static_cast<uint64_t>(value) : 0;
  79. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_ZERO_COPY_MEMORY_SIZE, value);
  80. param.zero_copy_mem_size = ret ? static_cast<uint64_t>(value) : 0;
  81. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_WEIGHT_SIZE, value);
  82. param.weight_size = ret ? static_cast<uint64_t>(value) : 0;
  83. ret = ge::AttrUtils::GetInt(model, MODEL_ATTR_TASK_GEN_BASE_ADDR, value);
  84. param.base_addr = ret ? static_cast<uint64_t>(value) : 0;
  85. ret = ge::AttrUtils::GetInt(model, MODEL_ATTR_TASK_GEN_WEIGHT_ADDR, value);
  86. param.weight_addr = ret ? static_cast<uint64_t>(value) : 0;
  87. ret = ge::AttrUtils::GetInt(model, ATTR_MODEL_CORE_TYPE, value);
  88. param.core_type = ret ? value : 0;
  89. GELOGI("ParseOpModelParams(), total_memory_size:%lu, zero_copy_size:%lu, weight_size:%lu. core_type = %lu",
  90. param.memory_size, param.zero_copy_mem_size, param.weight_size, param.core_type);
  91. }
  92. Status SingleOpModel::InitModelMem(StreamResource &res) {
  93. ParseOpModelParams(model_helper_, model_params_);
  94. if (model_params_.memory_size > model_params_.zero_copy_mem_size) {
  95. const string purpose("malloc feature map memory on model execute.");
  96. GELOGI("total memory: %lu, zero_copy_mem: %lu", model_params_.memory_size, model_params_.zero_copy_mem_size);
  97. model_params_.mem_base =
  98. res.MallocMemory(purpose, model_params_.memory_size - model_params_.zero_copy_mem_size, false);
  99. if (model_params_.mem_base == nullptr) {
  100. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  101. }
  102. }
  103. if (model_params_.weight_size > 0 && has_weight_) {
  104. const string purpose("malloc weights memory on model execute.");
  105. model_params_.weight_base = res.MallocWeight(purpose, model_params_.weight_size);
  106. if (model_params_.weight_base == nullptr) {
  107. // no need to free memory, for that was handled by StreamResources
  108. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  109. }
  110. auto weight_buffer = model_helper_.GetGeModel()->GetWeight();
  111. GELOGI("To copy weight to device. weight size = %zu", weight_buffer.GetSize());
  112. GE_CHK_RT_RET(rtMemcpy(model_params_.weight_base,
  113. model_params_.weight_size,
  114. weight_buffer.GetData(),
  115. weight_buffer.GetSize(),
  116. RT_MEMCPY_HOST_TO_DEVICE));
  117. }
  118. return SUCCESS;
  119. }
  120. Status SingleOpModel::ParseInputNode(const OpDescPtr &op_desc) {
  121. vector<int64_t> offsets = op_desc->GetOutputOffset();
  122. if (offsets.size() != kDataOutputNum) {
  123. GELOGE(ACL_ERROR_GE_PARAM_INVALID,
  124. "Data op should have only one output, but got %zu", op_desc->GetOutputOffset().size());
  125. return ACL_ERROR_GE_PARAM_INVALID;
  126. }
  127. auto output_desc = op_desc->GetOutputDescPtr(0);
  128. GE_CHECK_NOTNULL(output_desc);
  129. int64_t tensor_size = 0;
  130. (void)TensorUtils::GetSize(*output_desc, tensor_size);
  131. input_offset_list_.emplace_back(offsets[0]);
  132. input_sizes_.emplace_back(tensor_size);
  133. GELOGI("[%s] parse input node: %s, size = %ld, offset = %u", model_name_.c_str(), op_desc->GetName().c_str(),
  134. tensor_size, static_cast<uint32_t>(offsets[0]));
  135. return SUCCESS;
  136. }
  137. void SingleOpModel::ParseOutputNode(const OpDescPtr &op_desc) {
  138. vector<int64_t> offsets = op_desc->GetInputOffset();
  139. for (uint32_t k = 0; k < static_cast<uint32_t>(offsets.size()); ++k) {
  140. auto input_desc = op_desc->GetInputDescPtr(k);
  141. if (input_desc == nullptr) {
  142. continue;
  143. }
  144. int64_t tensor_size = 0;
  145. (void)TensorUtils::GetSize(*input_desc, tensor_size);
  146. output_offset_list_.emplace_back(offsets[k]);
  147. output_sizes_.emplace_back(tensor_size);
  148. GELOGI("[%s] parse output node: %s, size = %ld, offset = %u", model_name_.c_str(), op_desc->GetName().c_str(),
  149. tensor_size, static_cast<uint32_t>(offsets[k]));
  150. }
  151. }
  152. Status SingleOpModel::LoadAllNodes() {
  153. auto ge_model = model_helper_.GetGeModel();
  154. GE_CHECK_NOTNULL(ge_model);
  155. Graph graph = ge_model->GetGraph();
  156. model_id_ = ge_model->GetModelId();
  157. auto compute_graph = GraphUtils::GetComputeGraph(graph);
  158. if (compute_graph == nullptr) {
  159. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[%s] compute_graph is null", model_name_.c_str());
  160. return ACL_ERROR_GE_INTERNAL_ERROR;
  161. }
  162. auto nodes = compute_graph->GetDirectNode();
  163. size_t model_op_size = nodes.size();
  164. GELOGI("[%s] node size = %zu", model_name_.c_str(), model_op_size);
  165. for (size_t i = 0; i < model_op_size; ++i) {
  166. auto node = nodes.at(i);
  167. auto op_desc = node->GetOpDesc();
  168. GE_CHECK_NOTNULL(op_desc);
  169. op_list_[op_desc->GetId()] = node;
  170. auto op_type = op_desc->GetType();
  171. GELOGI("[%s] node[%zu] = %s, type = %s", model_name_.c_str(), i, node->GetName().c_str(), op_type.c_str());
  172. if (op_type == DATA_TYPE || op_type == AIPP_DATA_TYPE) {
  173. data_ops_.emplace_back(op_desc);
  174. continue;
  175. }
  176. if (op_type == CONSTANT || op_type == CONSTANTOP) {
  177. has_weight_ = true;
  178. continue;
  179. }
  180. if (op_type == NETOUTPUT) {
  181. netoutput_op_ = op_desc;
  182. continue;
  183. }
  184. ge_model->GetTBEKernelStore().LoadTBEKernelBinToOpDesc(op_desc);
  185. ge_model->GetCustAICPUKernelStore().LoadCustAICPUKernelBinToOpDesc(op_desc);
  186. }
  187. return SUCCESS;
  188. }
  189. Status SingleOpModel::ParseInputsAndOutputs() {
  190. for (auto &op_desc : data_ops_) {
  191. GE_CHK_STATUS_RET_NOLOG(ParseInputNode(op_desc));
  192. }
  193. ParseOutputNode(netoutput_op_);
  194. return SUCCESS;
  195. }
  196. Status SingleOpModel::SetInputsAndOutputs(SingleOp &single_op) {
  197. int arg_index = 0;
  198. for (size_t i = 0; i < input_offset_list_.size(); ++i) {
  199. auto *addr = model_params_.mem_base + input_offset_list_[i];
  200. model_params_.addr_mapping_.emplace(reinterpret_cast<uintptr_t>(addr), arg_index++);
  201. single_op.input_sizes_.emplace_back(input_sizes_[i]);
  202. single_op.input_addr_list_.emplace_back(addr);
  203. }
  204. for (size_t i = 0; i < output_offset_list_.size(); ++i) {
  205. auto *addr = model_params_.mem_base + output_offset_list_[i];
  206. model_params_.addr_mapping_.emplace(reinterpret_cast<uintptr_t>(addr), arg_index++);
  207. single_op.output_sizes_.emplace_back(output_sizes_[i]);
  208. single_op.output_addr_list_.emplace_back(addr);
  209. }
  210. single_op.args_.resize(arg_index);
  211. return SUCCESS;
  212. }
  213. Status SingleOpModel::BuildTaskList(StreamResource *stream_resource, SingleOp &single_op) {
  214. auto ge_model = model_helper_.GetGeModel();
  215. GE_CHECK_NOTNULL(ge_model);
  216. single_op.arg_table_.resize(single_op.input_sizes_.size() + single_op.output_sizes_.size());
  217. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  218. for (int i = 0; i < tasks.size(); ++i) {
  219. const TaskDef &task_def = tasks[i];
  220. GELOGI("[%s] Task[%d], type = %u, DebugString = %s", model_name_.c_str(), i, task_def.type(),
  221. task_def.DebugString().c_str());
  222. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  223. if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) {
  224. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  225. task_def.kernel_with_handle().context();
  226. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  227. if (kernel_type == ccKernelType::TE) {
  228. GELOGD("Building TBE task");
  229. TbeOpTask *tbe_task = nullptr;
  230. auto ret = BuildKernelTask(task_def, &tbe_task);
  231. if (ret != SUCCESS) {
  232. return ret;
  233. }
  234. ParseArgTable(tbe_task, single_op);
  235. tbe_task->SetModelArgs(model_name_, model_id_);
  236. if (tbe_task->tiling_buffer_ != nullptr) {
  237. tbe_task->stream_resource_ = stream_resource;
  238. }
  239. single_op.tasks_.emplace_back(tbe_task);
  240. } else if (kernel_type == ccKernelType::AI_CPU || kernel_type == ccKernelType::CUST_AI_CPU) {
  241. GELOGD("Building AICPU_CC task");
  242. OpTask *task = nullptr;
  243. uint64_t singleop_kernel_id = aicpu_kernel_id++;
  244. GELOGI("Build singleOp CCTask, kernel_id = %lu", singleop_kernel_id);
  245. auto ret = BuildCpuKernelTask(task_def.kernel(), &task, singleop_kernel_id);
  246. if (ret != SUCCESS) {
  247. return ret;
  248. }
  249. task->SetModelArgs(model_name_, model_id_);
  250. ParseArgTable(task, single_op);
  251. single_op.tasks_.emplace_back(task);
  252. } else {
  253. GELOGE(ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID,
  254. "Only TBE, AI_CPU, CUST_AI_CPU kernel are supported, but got %u", context.kernel_type());
  255. return ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID;
  256. }
  257. } else if (task_type == RT_MODEL_TASK_KERNEL_EX) {
  258. GELOGD("Building AICPU_TF task");
  259. AiCpuTask *aicpu_task = nullptr;
  260. bool depend_compute_flag = false;
  261. uint64_t singleop_kernel_id = aicpu_kernel_id++;
  262. GELOGI("Build singleOp TfTask, kernel_id = %lu", singleop_kernel_id);
  263. auto ret = BuildKernelExTask(task_def.kernel_ex(), &aicpu_task, false, depend_compute_flag, singleop_kernel_id);
  264. if (ret != SUCCESS) {
  265. return ret;
  266. }
  267. aicpu_task->SetModelArgs(model_name_, model_id_);
  268. ParseArgTable(aicpu_task, single_op);
  269. single_op.tasks_.emplace_back(aicpu_task);
  270. } else {
  271. // skip
  272. GELOGD("Skip task type: %d", static_cast<int>(task_type));
  273. }
  274. }
  275. return SUCCESS;
  276. }
  277. void SingleOpModel::ParseArgTable(OpTask *task, SingleOp &op) {
  278. if (task == nullptr) {
  279. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "tbe op task is nullptr");
  280. return;
  281. }
  282. // args: addr1, addr2, addr3 ...
  283. uintptr_t *arg_base = nullptr;
  284. size_t arg_num = 0;
  285. task->GetIoAddr(arg_base, arg_num);
  286. for (size_t i = 0; i < arg_num; ++i) {
  287. uintptr_t *ptr_to_addr = arg_base + i;
  288. uintptr_t addr = *ptr_to_addr;
  289. auto iter = model_params_.addr_mapping_.find(addr);
  290. if (iter != model_params_.addr_mapping_.end()) {
  291. int arg_index = iter->second;
  292. GELOGI("%s args[%zu] mapped to user designated args[%d]", task->GetOpdesc()->GetName().c_str(), i, arg_index);
  293. op.arg_table_[iter->second].emplace_back(ptr_to_addr);
  294. }
  295. }
  296. }
  297. Status SingleOpModel::BuildKernelTask(const domi::TaskDef &task_def, TbeOpTask **task) {
  298. GE_CHECK_NOTNULL(task);
  299. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  300. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  301. task_def.kernel_with_handle().context();
  302. auto iter = op_list_.find(context.op_index());
  303. if (iter == op_list_.end()) {
  304. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "op desc not found. op index = %u", context.op_index());
  305. return ACL_ERROR_GE_INTERNAL_ERROR;
  306. }
  307. auto *tbe_task = new (std::nothrow) TbeOpTask();
  308. if (tbe_task == nullptr) {
  309. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "create tbe op task failed");
  310. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  311. }
  312. auto builder = TbeTaskBuilder(model_name_, iter->second, task_def);
  313. auto ret = builder.BuildTask(*tbe_task, model_params_);
  314. if (ret != SUCCESS) {
  315. delete tbe_task;
  316. tbe_task = nullptr;
  317. return ret;
  318. }
  319. *task = tbe_task;
  320. return SUCCESS;
  321. }
  322. Status SingleOpModel::BuildKernelExTask(const domi::KernelExDef &kernel_def, AiCpuTask **task,
  323. bool dynamic_flag, bool& depend_compute_flag, uint64_t kernel_id) {
  324. auto iter = op_list_.find(kernel_def.op_index());
  325. if (iter == op_list_.end()) {
  326. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "op desc not found. op index = %u", kernel_def.op_index());
  327. return ACL_ERROR_GE_INTERNAL_ERROR;
  328. }
  329. std::unique_ptr<AiCpuTask> aicpu_task(new (std::nothrow) AiCpuTask());
  330. if (aicpu_task == nullptr) {
  331. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "create aicpu_TF op task failed");
  332. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  333. }
  334. auto builder = AiCpuTaskBuilder(iter->second->GetOpDesc(), kernel_def);
  335. auto ret = builder.BuildTask(*aicpu_task, model_params_, dynamic_flag, kernel_id);
  336. if (ret != SUCCESS) {
  337. GELOGE(ret, "build aicpu_TF op task failed");
  338. return ret;
  339. }
  340. depend_compute_flag = (aicpu_task->GetUnknownType() == DEPEND_COMPUTE);
  341. *task = aicpu_task.release();
  342. return SUCCESS;
  343. }
  344. Status SingleOpModel::BuildCpuKernelTask(const domi::KernelDef &kernel_def, OpTask **task, uint64_t kernel_id) {
  345. const auto &context = kernel_def.context();
  346. auto iter = op_list_.find(context.op_index());
  347. if (iter == op_list_.end()) {
  348. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "op desc not found. op index = %u", context.op_index());
  349. return ACL_ERROR_GE_INTERNAL_ERROR;
  350. }
  351. std::unique_ptr<AiCpuCCTask> aicpucc_task(new (std::nothrow) AiCpuCCTask());
  352. if (aicpucc_task == nullptr) {
  353. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "create aicpu_CC op task failed");
  354. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  355. }
  356. auto builder = AiCpuCCTaskBuilder(iter->second->GetOpDesc(), kernel_def);
  357. auto ret = builder.BuildTask(*aicpucc_task, kernel_id, model_params_);
  358. if (ret != SUCCESS) {
  359. GELOGE(ret, "build aicpu_CC op task failed");
  360. return ret;
  361. }
  362. *task = aicpucc_task.release();
  363. return SUCCESS;
  364. }
  365. Status SingleOpModel::BuildOp(StreamResource &resource, SingleOp &single_op) {
  366. GE_CHK_STATUS_RET_NOLOG(ParseInputsAndOutputs());
  367. GE_CHK_STATUS_RET_NOLOG(InitModelMem(resource));
  368. single_op.running_param_.reset(new (std::nothrow)SingleOpModelParam(model_params_));
  369. GE_CHECK_NOTNULL(single_op.running_param_);
  370. GE_CHK_STATUS_RET_NOLOG(SetInputsAndOutputs(single_op));
  371. return BuildTaskList(&resource, single_op);
  372. }
  373. Status SingleOpModel::BuildModelTaskKernel(const TaskDef &task_def, DynamicSingleOp &single_op) {
  374. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  375. const auto &context = task_type == RT_MODEL_TASK_KERNEL ? task_def.kernel().context() :
  376. task_def.kernel_with_handle().context();
  377. auto kernel_type = static_cast<ccKernelType>(context.kernel_type());
  378. if (kernel_type == ccKernelType::TE) {
  379. GELOGD("Building TBE task");
  380. TbeOpTask *tbe_task = nullptr;
  381. GE_CHK_STATUS_RET_NOLOG(BuildKernelTask(task_def, &tbe_task));
  382. tbe_task->SetModelArgs(model_name_, model_id_);
  383. single_op.op_task_.reset(tbe_task);
  384. } else if (kernel_type == ccKernelType::AI_CPU || kernel_type == ccKernelType::CUST_AI_CPU) {
  385. GELOGD("Building AICPU_CC task");
  386. OpTask *task = nullptr;
  387. uint64_t dynamic_singleop_kernel_id = aicpu_kernel_id++;
  388. GELOGI("Build dynamic singleOp CCTask, kernel_id = %lu", dynamic_singleop_kernel_id);
  389. GE_CHK_STATUS_RET_NOLOG(BuildCpuKernelTask(task_def.kernel(), &task, dynamic_singleop_kernel_id));
  390. task->SetModelArgs(model_name_, model_id_);
  391. single_op.op_task_.reset(task);
  392. } else {
  393. GELOGE(ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID,
  394. "Only TBE, AI_CPU, CUST_AI_CPU kernel are supported, but got %u", context.kernel_type());
  395. return ACL_ERROR_GE_OP_KERNEL_TYPE_INVALID;
  396. }
  397. return SUCCESS;
  398. }
  399. Status SingleOpModel::BuildTaskListForDynamicOp(DynamicSingleOp &single_op) {
  400. auto ge_model = model_helper_.GetGeModel();
  401. GE_CHECK_NOTNULL(ge_model);
  402. auto tasks = ge_model->GetModelTaskDefPtr()->task();
  403. for (int i = 0; i < tasks.size(); ++i) {
  404. const TaskDef &task_def = tasks[i];
  405. GELOGI("[%s] Task[%d], type = %u, DebugString = %s", model_name_.c_str(), i, task_def.type(),
  406. task_def.DebugString().c_str());
  407. auto task_type = static_cast<rtModelTaskType_t>(task_def.type());
  408. if (task_type == RT_MODEL_TASK_KERNEL || task_type == RT_MODEL_TASK_ALL_KERNEL) {
  409. if (single_op.op_task_ != nullptr) {
  410. GELOGE(ACL_ERROR_GE_OP_TASK_TYPE_INVALID, "Do not support dynamic op with multiple tasks.");
  411. return ACL_ERROR_GE_OP_TASK_TYPE_INVALID;
  412. }
  413. GE_CHK_STATUS_RET_NOLOG(BuildModelTaskKernel(task_def, single_op));
  414. } else if (task_type == RT_MODEL_TASK_KERNEL_EX) {
  415. if (single_op.op_task_ != nullptr) {
  416. GELOGE(ACL_ERROR_GE_OP_TASK_TYPE_INVALID, "Do not support dynamic op with multiple tasks.");
  417. return ACL_ERROR_GE_OP_TASK_TYPE_INVALID;
  418. }
  419. GELOGD("Building AICPU_TF task");
  420. AiCpuTask *aicpu_task = nullptr;
  421. bool depend_compute_flag = false;
  422. uint64_t dynamic_singleop_kernel_id = aicpu_kernel_id++;
  423. GELOGI("Build dynamic singleOp TfTask, kernel_id = %lu", dynamic_singleop_kernel_id);
  424. GE_CHK_STATUS_RET_NOLOG(BuildKernelExTask(task_def.kernel_ex(), &aicpu_task, true,
  425. depend_compute_flag, dynamic_singleop_kernel_id));
  426. if (depend_compute_flag) {
  427. if (i >= tasks.size() - 1) {
  428. GELOGE(ACL_ERROR_GE_PARAM_INVALID, "The copy task of the fourth operator was not found.");
  429. return ACL_ERROR_GE_PARAM_INVALID;
  430. }
  431. ++i;
  432. const TaskDef &copy_task_def = tasks[i];
  433. GE_CHK_STATUS_RET_NOLOG(aicpu_task->SetMemCopyTask(copy_task_def.kernel_ex()));
  434. }
  435. aicpu_task->SetModelArgs(model_name_, model_id_);
  436. single_op.op_task_.reset(aicpu_task);
  437. } else {
  438. // skip
  439. GELOGD("Skip task type: %d", static_cast<int>(task_type));
  440. }
  441. }
  442. return SUCCESS;
  443. }
  444. Status SingleOpModel::BuildDynamicOp(StreamResource &resource, DynamicSingleOp &single_op) {
  445. single_op.num_inputs_ = data_ops_.size();
  446. single_op.num_outputs_ = netoutput_op_->GetAllInputsSize();
  447. GE_CHK_STATUS_RET_NOLOG(InitModelMem(resource));
  448. model_params_.memory_size = UINT_MAX;
  449. auto ge_model = model_helper_.GetGeModel();
  450. GE_CHECK_NOTNULL(ge_model);
  451. if (NeedHybridModel(ge_model)) {
  452. GELOGD("Build single op HybridModel.");
  453. GE_CHK_STATUS_RET_NOLOG(hybrid::NodeExecutorManager::GetInstance().EnsureInitialized());
  454. auto root_model = model_helper_.GetGeRootModel();
  455. GE_CHECK_NOTNULL(root_model);
  456. root_model->SetRootGraph(GraphUtils::GetComputeGraph(ge_model->GetGraph()));
  457. root_model->SetSubgraphInstanceNameToModel(root_model->GetRootGraph()->GetName(), ge_model);
  458. single_op.hybrid_model_.reset(new (std::nothrow)hybrid::HybridModel(root_model));
  459. GE_CHECK_NOTNULL(single_op.hybrid_model_);
  460. GE_CHK_STATUS_RET(single_op.hybrid_model_->Init(true), "Failed to init hybrid model");
  461. int32_t device_id = 0;
  462. GE_CHK_RT_RET(rtGetDevice(&device_id));
  463. single_op.hybrid_model_executor_.reset(new (std::nothrow)hybrid::HybridModelExecutor(single_op.hybrid_model_.get(),
  464. device_id,
  465. resource.GetStream()));
  466. GE_CHECK_NOTNULL(single_op.hybrid_model_executor_);
  467. GE_CHK_STATUS_RET(single_op.hybrid_model_executor_->Init(), "Failed to init hybrid model");
  468. return SUCCESS;
  469. }
  470. return BuildTaskListForDynamicOp(single_op);
  471. }
  472. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示