You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ge_generator_unittest.cc 2.4 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #define private public
  18. #define protected public
  19. #include "generator/ge_generator.h"
  20. #include "graph/utils/tensor_utils.h"
  21. using namespace std;
  22. namespace ge {
  23. class UtestGeGenerator : public testing::Test {
  24. protected:
  25. void SetUp() {}
  26. void TearDown() {}
  27. };
  28. /*
  29. TEST_F(UtestGeGenerator, test_build_single_op_offline) {
  30. GeTensorDesc tensor_desc(GeShape(), FORMAT_NCHW, DT_FLOAT);
  31. TensorUtils::SetSize(tensor_desc, 512);
  32. shared_ptr<OpDesc> op_desc = make_shared<OpDesc>("Add", "add");
  33. EXPECT_EQ(op_desc->AddInputDesc(tensor_desc), GRAPH_SUCCESS);
  34. EXPECT_EQ(op_desc->AddInputDesc(tensor_desc), GRAPH_SUCCESS);
  35. EXPECT_EQ(op_desc->AddOutputDesc(tensor_desc), GRAPH_SUCCESS);
  36. GeTensor tensor(tensor_desc);
  37. const vector<GeTensor> inputs = { tensor, tensor };
  38. const vector<GeTensor> outputs = { tensor };
  39. // not Initialize, impl is null.
  40. GeGenerator generator;
  41. EXPECT_EQ(generator.BuildSingleOpModel(op_desc, inputs, outputs, "offline_"), PARAM_INVALID);
  42. // const map<string, string> &options
  43. generator.Initialize({});
  44. EXPECT_EQ(generator.BuildSingleOpModel(op_desc, inputs, outputs, "offline_"), GE_GENERATOR_GRAPH_MANAGER_BUILD_GRAPH_FAILED);
  45. }
  46. */
  47. TEST_F(UtestGeGenerator, test_build_single_op_online) {
  48. GeTensorDesc tensor_desc;
  49. shared_ptr<OpDesc> op_desc = make_shared<OpDesc>("Add", "add");
  50. op_desc->AddInputDesc(tensor_desc);
  51. op_desc->AddInputDesc(tensor_desc);
  52. op_desc->AddOutputDesc(tensor_desc);
  53. GeTensor tensor(tensor_desc);
  54. const vector<GeTensor> inputs = { tensor, tensor };
  55. const vector<GeTensor> outputs = { tensor };
  56. GeGenerator generator;
  57. generator.Initialize({});
  58. ModelBufferData model_buffer;
  59. EXPECT_EQ(generator.BuildSingleOpModel(op_desc, inputs, outputs, ENGINE_AIVECTOR, model_buffer), FAILED);
  60. }
  61. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示