You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

hybrid_model_async_executor.cc 26 kB

5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "hybrid/executor/hybrid_model_async_executor.h"
  17. #include "graph/load/model_manager/model_utils.h"
  18. #include "graph/utils/tensor_utils.h"
  19. #include "graph/utils/type_utils.h"
  20. #include "graph/ge_context.h"
  21. #include "omm/csa_interact.h"
  22. namespace ge {
  23. namespace hybrid {
  24. namespace {
  25. const int kDataOutputIndex = 0;
  26. const size_t kMinimumPiplineStages = 2;
  27. const int kDefaultLoopCount = 10;
  28. }
  29. HybridModelAsyncExecutor::HybridModelAsyncExecutor(HybridModel *model)
  30. : model_(model), run_flag_(false), data_dumper_(nullptr) {
  31. }
  32. HybridModelAsyncExecutor::~HybridModelAsyncExecutor() {
  33. if (stream_ != nullptr) {
  34. GE_CHK_RT(rtStreamDestroy(stream_));
  35. }
  36. }
  37. void HybridModelAsyncExecutor::SetDeviceId(uint32_t device_id) {
  38. device_id_ = device_id;
  39. }
  40. void HybridModelAsyncExecutor::SetModelId(uint32_t model_id) {
  41. model_id_ = model_id;
  42. }
  43. Status HybridModelAsyncExecutor::EnqueueData(const shared_ptr<InputDataWrapper> &data) {
  44. if (data_inputer_->Push(data) != SUCCESS) {
  45. REPORT_CALL_ERROR("E19999", "Data queue is full, please call again later, model_id %u.", model_id_);
  46. GELOGE(domi::DATA_QUEUE_ISFULL,
  47. "[Push][Data] Data queue is full, please call again later, model_id %u ", model_id_);
  48. return domi::DATA_QUEUE_ISFULL;
  49. }
  50. GELOGD("EnqueueData successfully. model_id = %u, data_index = %u", data->GetInput().model_id, data->GetInput().index);
  51. return SUCCESS;
  52. }
  53. Status HybridModelAsyncExecutor::Start(const std::shared_ptr<ModelListener> &listener) {
  54. GELOGD("HybridModelExecutor::Start IN, has listener = %d", listener != nullptr);
  55. std::lock_guard<std::mutex> lk(mu_);
  56. if (run_flag_) {
  57. REPORT_INNER_ERROR("E19999", "Model already started, model_id:%u.", model_id_);
  58. GELOGE(INTERNAL_ERROR, "[Check][RunState] Model already started, model_id:%u.", model_id_);
  59. return INTERNAL_ERROR;
  60. }
  61. run_flag_ = true;
  62. listener_ = listener;
  63. future_ = std::async(std::launch::async, [&]() -> Status {
  64. GetThreadLocalContext() = *executor_->GetContext()->ge_context;
  65. GetContext().SetSessionId(executor_->GetContext()->session_id);
  66. GetContext().SetContextId(executor_->GetContext()->context_id);
  67. return RunInternal();
  68. });
  69. GE_CHK_BOOL_RET_STATUS(future_.valid(), INTERNAL_ERROR,
  70. "[Check][RunState] Failed to start, model_id:%u.", model_id_);
  71. GELOGD("HybridModelExecutor::Start successfully");
  72. return SUCCESS;
  73. }
  74. Status HybridModelAsyncExecutor::Stop() {
  75. std::lock_guard<std::mutex> lk(mu_);
  76. run_flag_ = false;
  77. data_inputer_->Stop();
  78. Status ret = SUCCESS;
  79. if (future_.valid()) {
  80. ret = future_.get();
  81. }
  82. if (is_op_debug_reg_) {
  83. op_debug_register_.UnregisterDebugForStream(stream_);
  84. }
  85. if (stream_ != nullptr) {
  86. GE_CHK_RT(rtStreamDestroy(stream_));
  87. stream_ = nullptr;
  88. }
  89. return ret;
  90. }
  91. Status HybridModelAsyncExecutor::Init() {
  92. data_inputer_ = std::unique_ptr<DataInputer>(new(std::nothrow) DataInputer());
  93. GE_CHECK_NOTNULL(data_inputer_);
  94. GE_CHK_RT_RET(rtStreamCreate(&stream_, RT_STREAM_PRIORITY_DEFAULT));
  95. executor_ = std::unique_ptr<HybridModelExecutor>(new(std::nothrow) HybridModelExecutor(model_, device_id_, stream_));
  96. GE_CHECK_NOTNULL(executor_);
  97. GE_CHK_STATUS_RET(executor_->Init(),
  98. "[Init][HybridModelExecutor] failed, model_id:%u.", model_id_);
  99. GE_CHK_STATUS_RET(DumpOpDebug(), "[Dump][OpDebug] failed, model_id:%u.", model_id_);
  100. GELOGI("HybridModel stage nums:%zu", model_->GetRootGraphItem()->NumGroups());
  101. if (model_->GetRootGraphItem()->NumGroups() >= kMinimumPiplineStages) {
  102. pipe_executor_ =
  103. std::unique_ptr<HybridModelPipelineExecutor>(new(std::nothrow) HybridModelPipelineExecutor(model_, device_id_));
  104. GE_CHECK_NOTNULL(pipe_executor_);
  105. GE_CHK_STATUS_RET(pipe_executor_->Init(),
  106. "[Init][HybridModelPipelineExecutor] failed, model_id:%u.", model_id_);
  107. }
  108. GE_CHK_STATUS_RET(InitInputDesc(), "[Init][InputDesc] failed, model_id:%u.", model_id_);
  109. return SUCCESS;
  110. }
  111. Status HybridModelAsyncExecutor::PreRun(InputData &current_data, HybridModelExecutor::ExecuteArgs &args) {
  112. GE_CHK_STATUS_RET(SyncVarData(), "[Invoke][SyncVarData] failed, model_id:%u.", model_id_);
  113. RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[SyncVarData] End");
  114. GE_CHK_STATUS_RET(PrepareInputs(current_data, args),
  115. "[Invoke][PrepareInputs] failed to copy input data to model, model_id:%u.", model_id_);
  116. RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[CopyInputData] End");
  117. return SUCCESS;
  118. }
  119. Status HybridModelAsyncExecutor::RunInternal() {
  120. auto device_id = static_cast<int32_t>(device_id_);
  121. GELOGD("Hybrid model start. model_id = %u, device_id = %u", model_id_, device_id_);
  122. GE_CHK_RT_RET(rtSetDevice(device_id));
  123. // DeviceReset before thread run finished!
  124. GE_MAKE_GUARD(not_used_var, [&] { GE_CHK_RT(rtDeviceReset(device_id)); });
  125. while (run_flag_) {
  126. // Model has not indeedly started running before received data
  127. SetRunningFlag(false);
  128. std::shared_ptr<InputDataWrapper> data_wrapper;
  129. Status ret = data_inputer_->Pop(data_wrapper);
  130. // Model indeedly start running
  131. SetRunningFlag(true);
  132. if (data_wrapper == nullptr || ret != SUCCESS) {
  133. GELOGI("data_wrapper is null!, ret = %u", ret);
  134. continue;
  135. }
  136. GELOGI("Getting the input data, model_id:%u", model_id_);
  137. GE_IF_BOOL_EXEC(!run_flag_, break);
  138. InputData current_data = data_wrapper->GetInput();
  139. GELOGI("Model thread Run begin, model id:%u, data index:%u.", model_id_, current_data.index);
  140. RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[RunInternal] [iteration = %d] Start", iterator_count_);
  141. HybridModelExecutor::ExecuteArgs args;
  142. ret = PreRun(current_data, args);
  143. GE_CHK_BOOL_TRUE_EXEC_WITH_LOG(
  144. ret != SUCCESS, (void) HandleResult(ret, current_data.index, args, data_wrapper->GetOutput());
  145. CsaInteract::GetInstance().StoreInternalErrorCode(ret, ERROR_MODULE_FMK, JOBSUBSTATE_GRAPH_EXEC);
  146. continue, "[Invoke][PreRun] failed, model_id:%u.", model_id_); // [No need to check value]
  147. if (pipe_executor_ != nullptr) {
  148. GELOGI("HybridModel will execute in pipeline mode");
  149. auto iter_per_run = std::getenv("ITER_NUM");
  150. if (iter_per_run) {
  151. args.num_loops = static_cast<int>(strtol(iter_per_run, nullptr, kDefaultLoopCount));
  152. }
  153. ret = pipe_executor_->Execute(args);
  154. } else {
  155. GELOGI("HybridModel will execute in singleline mode");
  156. ge::GetContext().SetSessionId(executor_->GetContext()->session_id);
  157. ge::GetContext().SetContextId(executor_->GetContext()->context_id);
  158. ret = executor_->Execute(args);
  159. }
  160. ret = HandleResult(ret, current_data.index, args, data_wrapper->GetOutput());
  161. if (ret != SUCCESS) {
  162. CsaInteract::GetInstance().StoreInternalErrorCode(ret, ERROR_MODULE_RUNTIME, JOBSUBSTATE_GRAPH_EXEC);
  163. continue;
  164. }
  165. RECORD_MODEL_EXECUTION_EVENT(executor_->GetContext(), "[RunInternal] [iteration = %d] End", iterator_count_);
  166. iterator_count_++;
  167. SetRunningFlag(false);
  168. GELOGI("run iterator count is %lu, model_id:%u", iterator_count_, model_id_);
  169. }
  170. CsaInteract::GetInstance().WriteInternalErrorCode();
  171. GELOGI("Model run end, model id:%u", model_id_);
  172. return SUCCESS;
  173. }
  174. Status HybridModelAsyncExecutor::HandleResult(Status exec_ret,
  175. uint32_t data_id,
  176. HybridModelExecutor::ExecuteArgs &args,
  177. OutputData *output_data) {
  178. GELOGD("Start to handle result. model id = %u, data index = %u, execution ret = %u", model_id_, data_id, exec_ret);
  179. std::vector<ge::OutputTensorInfo> output_tensor_info_list;
  180. if (args.is_eos) {
  181. GELOGI("End of sequence, model id = %u", model_id_);
  182. GE_CHK_STATUS_RET_NOLOG(OnComputeDone(data_id, END_OF_SEQUENCE, output_tensor_info_list));
  183. return SUCCESS;
  184. }
  185. if (exec_ret != SUCCESS) {
  186. GELOGE(exec_ret, "[Check][Param:Status] failed to execute graph. model_id = %u", model_id_);
  187. REPORT_INNER_ERROR("E19999", "failed to execute graph. model_id = %u", model_id_);
  188. return OnComputeDone(data_id, INTERNAL_ERROR, output_tensor_info_list);
  189. }
  190. GE_CHECK_NOTNULL(output_data);
  191. auto ret = CopyOutputs(args, output_data, output_tensor_info_list);
  192. if (ret != SUCCESS) {
  193. OnComputeDone(data_id, INTERNAL_ERROR, output_tensor_info_list);
  194. return INTERNAL_ERROR;
  195. }
  196. GELOGD("Executed graph successfully, model id = %u, data_index = %u", model_id_, data_id);
  197. return OnComputeDone(data_id, SUCCESS, output_tensor_info_list);
  198. }
  199. Status HybridModelAsyncExecutor::SyncVarData() {
  200. GELOGI("Sync var data, model id:%u", model_id_);
  201. TensorValue *global_step_var = model_->GetVariable(NODE_NAME_GLOBAL_STEP);
  202. if (global_step_var != nullptr) {
  203. std::vector<uint64_t> v_step;
  204. v_step.push_back(iterator_count_);
  205. GE_CHK_RT_RET(rtMemcpy(global_step_var->MutableData(),
  206. global_step_var->GetSize(),
  207. v_step.data(),
  208. v_step.size() * sizeof(uint64_t),
  209. RT_MEMCPY_HOST_TO_DEVICE));
  210. } else {
  211. GELOGD("No GLOBAL_STEP variable was found.");
  212. }
  213. return SUCCESS;
  214. }
  215. Status HybridModelAsyncExecutor::PrepareInputs(const InputData &current_data, HybridModelExecutor::ExecuteArgs &args) {
  216. if (current_data.blobs.size() < input_tensor_desc_.size()) {
  217. GELOGE(PARAM_INVALID,
  218. "[Check][Size]Blob size mismatches, expect at least %zu, but got %zu, model_id = %u",
  219. input_tensor_desc_.size(), current_data.blobs.size(), model_id_);
  220. REPORT_INNER_ERROR("E19999", "Blob size mismatches, expect at least %zu, but got %zu, model_id = %u.",
  221. input_tensor_desc_.size(), current_data.blobs.size(), model_id_);
  222. return PARAM_INVALID;
  223. }
  224. auto allocator = NpuMemoryAllocator::GetAllocator(device_id_);
  225. GE_CHECK_NOTNULL(allocator);
  226. args.input_desc.resize(input_tensor_desc_.size());
  227. const std::vector<DataBuffer> &blobs = current_data.blobs;
  228. for (size_t input_index = 0; input_index < input_tensor_desc_.size(); ++input_index) {
  229. auto tensor_size = input_sizes_[input_index];
  230. if (is_input_dynamic_[input_index]) {
  231. if (input_index >= current_data.shapes.size()) {
  232. GELOGE(PARAM_INVALID,
  233. "[Check][Range]Shape index out of range, index = %zu, shape size = %zu model_id = %u.",
  234. input_index, current_data.shapes.size(), model_id_);
  235. REPORT_INNER_ERROR("E19999", "Shape index out of range, index = %zu, shape size = %zu, model_id = %u.",
  236. input_index, current_data.shapes.size(), model_id_);
  237. return PARAM_INVALID;
  238. }
  239. auto &tensor_desc = input_tensor_desc_[input_index];
  240. GeShape shape(current_data.shapes[input_index]);
  241. std::vector<std::pair<int64_t, int64_t>> range;
  242. auto range_ret = tensor_desc->GetShapeRange(range);
  243. GE_CHK_BOOL_RET_STATUS(range_ret == GRAPH_SUCCESS, INTERNAL_ERROR,
  244. "[Invoke][GetShapeRange] failed, ret=%u, model_id = %u.", range_ret, model_id_);
  245. for (size_t k = 0; k < range.size(); ++k) {
  246. if (k >= shape.GetDimNum()) {
  247. break;
  248. }
  249. // range[k].second can be -1
  250. if (shape.GetDim(k) < range[k].first || (range[k].second >= 0 && shape.GetDim(k) > range[k].second)) {
  251. GELOGE(PARAM_INVALID, "[Check][Range]Dim out of range, shape idx = %zu, dim idx = %zu,"
  252. "dim = %ld, range = [%ld, %ld], model_id = %u.",
  253. input_index, k, shape.GetDim(k), range[k].first, range[k].second, model_id_);
  254. REPORT_INNER_ERROR("E19999", "Dim out of range, shape idx = %zu, dim idx = %zu, dim = %ld,"
  255. "range = [%ld, %ld], model_id = %u.",
  256. input_index, k, shape.GetDim(k), range[k].first, range[k].second, model_id_);
  257. return PARAM_INVALID;
  258. }
  259. }
  260. tensor_desc->SetShape(shape);
  261. args.input_desc[input_index] = tensor_desc;
  262. GELOGD("Update shape of input[%zu] to [%s]", input_index, tensor_desc->MutableShape().ToString().c_str());
  263. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*tensor_desc, tensor_size),
  264. "[Invoke][GetTensorMemorySizeInBytes]Failed to calc tensor size,"
  265. "index = %zu, shape = [%s], model_id = %u.",
  266. input_index, tensor_desc->GetShape().ToString().c_str(), model_id_);
  267. GELOGD("Input tensor[%zu] size = %zu", input_index, tensor_size);
  268. }
  269. GE_CHECK_GE(tensor_size, 0);
  270. AllocationAttr attr;
  271. if (GetContext().GetHostExecFlag()) {
  272. attr.SetMemType(HOST_DDR);
  273. }
  274. auto tensor_buffer = TensorBuffer::Create(allocator, tensor_size, &attr);
  275. GE_CHECK_NOTNULL(tensor_buffer);
  276. args.inputs.emplace_back(std::shared_ptr<TensorBuffer>(tensor_buffer.release()));
  277. GELOGD("To copy input data for input[%zu]", input_index);
  278. const DataBuffer &data_buf = blobs[input_index];
  279. auto mem_size = static_cast<uint64_t>(tensor_size);
  280. if (mem_size < data_buf.length) {
  281. REPORT_INNER_ERROR("E19999",
  282. "input data size(%lu) does not match model required size(%lu), ret failed, model_id = %u.",
  283. data_buf.length, mem_size, model_id_);
  284. GELOGE(PARAM_INVALID,
  285. "[Check][Size]input data size(%lu) does not match model required size(%lu), ret failed, model_id = %u.",
  286. data_buf.length, mem_size, model_id_);
  287. return PARAM_INVALID;
  288. }
  289. if (data_buf.length > 0) {
  290. GELOGI("[IMAS]CopyPlainData memcpy graph_%u type[F] output[%zu] memaddr[%p] mem_size[%zu] datasize[%lu]",
  291. model_->root_runtime_param_.graph_id,
  292. input_index,
  293. args.inputs[input_index].GetData(),
  294. mem_size,
  295. data_buf.length);
  296. GE_CHK_RT_RET(rtMemcpy(args.inputs[input_index].MutableData(),
  297. mem_size,
  298. data_buf.data,
  299. data_buf.length,
  300. RT_MEMCPY_HOST_TO_DEVICE));
  301. }
  302. }
  303. return SUCCESS;
  304. }
  305. Status HybridModelAsyncExecutor::InitInputDesc() {
  306. int input_index = 0;
  307. for (const auto &input_node : model_->GetRootGraphItem()->GetInputNodes()) {
  308. GELOGD("Init input[%u], node = %s, is_dynamic = %d",
  309. input_index,
  310. input_node->NodeName().c_str(),
  311. input_node->is_dynamic);
  312. auto output_desc = input_node->MutableOutputDesc(kDataOutputIndex);
  313. GE_CHECK_NOTNULL(output_desc);
  314. int64_t tensor_size = -1;
  315. if (!input_node->is_dynamic) {
  316. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetSize(*output_desc, tensor_size),
  317. "Failed to get size from %s",
  318. input_node->NodeName().c_str());
  319. if (tensor_size == 0) {
  320. GELOGW("[%s] Tensor size == 0", input_node->NodeName().c_str());
  321. GE_CHK_GRAPH_STATUS_RET(TensorUtils::GetTensorMemorySizeInBytes(*output_desc, tensor_size),
  322. "Failed to calc tensor size");
  323. GELOGD("[%s] Tensor size updated to %ld", input_node->NodeName().c_str(), tensor_size);
  324. }
  325. }
  326. input_sizes_.emplace(input_index, tensor_size);
  327. input_tensor_desc_.emplace(input_index, output_desc);
  328. is_input_dynamic_.push_back(input_node->is_dynamic);
  329. input_index += 1;
  330. }
  331. return SUCCESS;
  332. }
  333. Status HybridModelAsyncExecutor::OnComputeDone(uint32_t data_index, uint32_t result_code,
  334. std::vector<ge::OutputTensorInfo> &outputs) {
  335. GELOGD("OnComputeDone. model id = %u, data index = %u, execution ret = %u", model_id_, data_index, result_code);
  336. if (listener_ != nullptr) {
  337. GE_CHK_STATUS(listener_->OnComputeDone(model_id_, data_index, result_code, outputs),
  338. "[Invoke][OnComputeDone] failed, model_id = %u.", model_id_);
  339. }
  340. return result_code;
  341. }
  342. Status HybridModelAsyncExecutor::CopyOutputs(HybridModelExecutor::ExecuteArgs &args,
  343. OutputData *output_data,
  344. std::vector<ge::OutputTensorInfo> &outputs) {
  345. // copy output data from op to designated position
  346. std::vector<ConstGeTensorDescPtr> &output_tensor_desc_list = args.output_desc;
  347. std::vector<TensorValue> &output_tensors = args.outputs;
  348. if (output_tensor_desc_list.size() != output_tensors.size()) {
  349. GELOGE(INTERNAL_ERROR,
  350. "[Check][Size]Output sizes mismatch. From op_desc = %zu, and from output tensors = %zu, model_id = %u.",
  351. output_tensor_desc_list.size(), output_tensors.size(), model_id_);
  352. REPORT_INNER_ERROR("E19999",
  353. "Output sizes mismatch. From op_desc = %zu, and from output tensors = %zu, model_id = %u.",
  354. output_tensor_desc_list.size(), output_tensors.size(), model_id_);
  355. return INTERNAL_ERROR;
  356. }
  357. GELOGD("Number of outputs = %zu", output_tensor_desc_list.size());
  358. for (size_t i = 0; i < output_tensors.size(); ++i) {
  359. GELOGD("Start to process output[%zu]", i);
  360. auto &output_tensor = output_tensors[i];
  361. auto &tensor_desc = output_tensor_desc_list.at(i);
  362. GE_CHECK_NOTNULL(tensor_desc);
  363. int64_t output_size = -1;
  364. GE_CHK_GRAPH_STATUS_RET(TensorUtils::CalcTensorMemSize(tensor_desc->GetShape(),
  365. tensor_desc->GetFormat(),
  366. tensor_desc->GetDataType(),
  367. output_size),
  368. "[Calc][TensorMemSize]Failed for output[%zu]. shape = [%s], type = %s, format = %s",
  369. i,
  370. tensor_desc->GetShape().ToString().c_str(),
  371. TypeUtils::DataTypeToSerialString(tensor_desc->GetDataType()).c_str(),
  372. TypeUtils::FormatToSerialString(tensor_desc->GetFormat()).c_str());
  373. GELOGD("Got tensor size for output[%zu] successfully. shape = [%s], type = %s, format = %s, size = %ld",
  374. i,
  375. tensor_desc->GetShape().ToString().c_str(),
  376. TypeUtils::DataTypeToSerialString(tensor_desc->GetDataType()).c_str(),
  377. TypeUtils::FormatToSerialString(tensor_desc->GetFormat()).c_str(),
  378. output_size);
  379. GE_CHECK_GE(output_size, 0);
  380. GE_CHECK_LE(output_size, UINT32_MAX);
  381. if (output_tensor.GetSize() < static_cast<size_t>(output_size)) {
  382. GELOGE(INTERNAL_ERROR,
  383. "[Check][Size]output[%zu] tensor size(%zu) is not enough for output shape [%s], model_id = %u.",
  384. i, output_tensor.GetSize(), tensor_desc->GetShape().ToString().c_str(), model_id_);
  385. REPORT_INNER_ERROR("E19999", "output[%zu] tensor size(%zu) is not enough for output shape [%s] model_id = %u",
  386. i, output_tensor.GetSize(), tensor_desc->GetShape().ToString().c_str(), model_id_);
  387. return INTERNAL_ERROR;
  388. }
  389. ge::OutputTensorInfo output;
  390. output.data_type = static_cast<uint32_t>(tensor_desc->GetDataType());
  391. output.dims = tensor_desc->GetShape().GetDims();
  392. output.length = output_size;
  393. if (output_size > 0) {
  394. std::unique_ptr<uint8_t[]> data_buf(new(std::nothrow) uint8_t[output_size]);
  395. GE_CHECK_NOTNULL(data_buf);
  396. GE_CHK_RT_RET(rtMemcpy(data_buf.get(),
  397. output_size,
  398. output_tensor.GetData(),
  399. output_size,
  400. RT_MEMCPY_DEVICE_TO_HOST));
  401. output.data = std::move(data_buf);
  402. output_data->blobs.emplace_back(data_buf.get(), static_cast<uint32_t>(output_size), false);
  403. } else {
  404. GELOGW("Output[%zu] is empty. shape = [%s]", i, tensor_desc->GetShape().ToString().c_str());
  405. output.data = nullptr;
  406. output_data->blobs.emplace_back(nullptr, 0U, false);
  407. }
  408. outputs.emplace_back(std::move(output));
  409. GELOGD("Output[%zu] added, type = %s, shape = [%s], size = %ld",
  410. i,
  411. TypeUtils::DataTypeToSerialString(tensor_desc->GetDataType()).c_str(),
  412. tensor_desc->GetShape().ToString().c_str(),
  413. output_size);
  414. }
  415. return SUCCESS;
  416. }
  417. Status HybridModelAsyncExecutor::Execute(const std::vector<DataBuffer> &inputs,
  418. const std::vector<GeTensorDesc> &input_desc,
  419. std::vector<DataBuffer> &outputs,
  420. std::vector<GeTensorDesc> &output_desc) {
  421. GELOGI("Start to execute model.");
  422. HybridModelExecutor::ExecuteArgs args;
  423. args.inputs.resize(inputs.size());
  424. for (size_t i = 0; i < inputs.size(); ++i) {
  425. TensorValue tensor_value(inputs[i].data, inputs[i].length);
  426. args.inputs[i] = tensor_value;
  427. }
  428. for (size_t i = 0; i < outputs.size(); ++i) {
  429. args.outputs.emplace_back(TensorValue(outputs[i].data, outputs[i].length));
  430. }
  431. // usr must designate input tensorDesc when input shape is dynamic in inference
  432. for (size_t i = 0; i < input_desc.size(); ++i) {
  433. ConstGeTensorDescPtr tensor_desc_ptr = MakeShared<GeTensorDesc>(input_desc[i]);
  434. args.input_desc.emplace_back(tensor_desc_ptr);
  435. }
  436. GE_CHK_STATUS_RET(executor_->Execute(args), "[Invoke][Execute] Failed, model_id = %u.", model_id_);
  437. for (const auto &output_tensor_desc : args.output_desc) {
  438. output_desc.emplace_back(*output_tensor_desc);
  439. }
  440. return SUCCESS;
  441. }
  442. Status HybridModelAsyncExecutor::Execute(const vector<GeTensor> &inputs, vector<GeTensor> &outputs) {
  443. GELOGD("Start to execute model.");
  444. // prepare inputs
  445. InputData input_data;
  446. for (auto &tensor : inputs) {
  447. DataBuffer buffer;
  448. buffer.data = const_cast<uint8_t *>(tensor.GetData().GetData());
  449. buffer.length = tensor.GetData().size();
  450. input_data.blobs.emplace_back(buffer);
  451. input_data.shapes.emplace_back(tensor.GetTensorDesc().GetShape().GetDims());
  452. }
  453. HybridModelExecutor::ExecuteArgs args;
  454. GE_CHK_STATUS_RET(PrepareInputs(input_data, args),
  455. "[Invoke][PrepareInputs]Failed to copy input data to model, model_id = %u", model_id_);
  456. GELOGD("Done copying input data successfully.");
  457. GE_CHK_STATUS_RET(executor_->Execute(args), "[Invoke][Execute] Failed, model_id = %u.", model_id_);
  458. std::vector<ge::OutputTensorInfo> output_tensor_info_list;
  459. OutputData output_data;
  460. GE_CHK_STATUS_RET(CopyOutputs(args, &output_data, output_tensor_info_list),
  461. "[Invoke][CopyOutputs]Failed to copy outputs, model_id = %u.", model_id_);
  462. GELOGD("Done copying output data successfully. output count = %zu", output_tensor_info_list.size());
  463. int out_index = 0;
  464. outputs.resize(output_tensor_info_list.size());
  465. for (auto &out_tensor_info : output_tensor_info_list) {
  466. auto &ge_tensor = outputs[out_index];
  467. if (out_tensor_info.length > 0) {
  468. GE_CHK_GRAPH_STATUS_RET(ge_tensor.SetData(out_tensor_info.data.get(), out_tensor_info.length),
  469. "Failed to set output[%d].", out_index);
  470. }
  471. ge_tensor.MutableTensorDesc() = *args.output_desc[out_index];
  472. GELOGD("Set output[%d], tensor size = %ld, shape = [%s]",
  473. out_index,
  474. out_tensor_info.length,
  475. ge_tensor.MutableTensorDesc().MutableShape().ToString().c_str());
  476. ++out_index;
  477. }
  478. return SUCCESS;
  479. }
  480. Status HybridModelAsyncExecutor::DumpOpDebug() {
  481. const DumpProperties &dump_properties = executor_->GetContext()->dump_properties;
  482. if (dump_properties.IsOpDebugOpen()) {
  483. GELOGD("Opdebug is open in hybrid engine");
  484. uint32_t op_debug_mode = dump_properties.GetOpDebugMode();
  485. GE_CHK_RT_RET(op_debug_register_.RegisterDebugForStream(stream_, op_debug_mode, data_dumper_));
  486. is_op_debug_reg_ = true;
  487. data_dumper_.SetDumpProperties(dump_properties);
  488. data_dumper_.SetModelName(model_->GetModelName());
  489. data_dumper_.SetModelId(model_->GetModelId());
  490. data_dumper_.SetDeviceId(model_->GetDeviceId());
  491. void *global_step = nullptr;
  492. TensorValue *varible_global_step = model_->GetVariable(NODE_NAME_GLOBAL_STEP);
  493. if (varible_global_step != nullptr) {
  494. global_step = const_cast<void *>(varible_global_step->GetData());
  495. }
  496. void *loop_per_iter = nullptr;
  497. TensorValue *varible_loop_per_iter = model_->GetVariable(NODE_NAME_FLOWCTRL_LOOP_PER_ITER);
  498. if (varible_loop_per_iter != nullptr) {
  499. loop_per_iter = const_cast<void *>(varible_loop_per_iter->GetData());
  500. }
  501. void *loop_cond = nullptr;
  502. TensorValue *varible_loop_cond = model_->GetVariable(NODE_NAME_FLOWCTRL_LOOP_COND);
  503. if (varible_loop_cond != nullptr) {
  504. loop_cond = const_cast<void *>(varible_loop_cond->GetData());
  505. }
  506. data_dumper_.SetLoopAddr(global_step, loop_per_iter, loop_cond);
  507. GE_CHK_STATUS_RET(data_dumper_.LoadDumpInfo(),
  508. "[Invoke][LoadDumpInfo] failed in hybrid engine, model_id = %u.", model_id_);
  509. GELOGD("Dump op debug SUCCESS in hybrid engine");
  510. }
  511. return SUCCESS;
  512. }
  513. } // namespace hybrid
  514. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示