You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

transformer_utils.h 1.5 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef COMMON_GRAPH_UTILS_TRANSFORMER_UTILS_H_
  17. #define COMMON_GRAPH_UTILS_TRANSFORMER_UTILS_H_
  18. #include <string>
  19. #include <map>
  20. #include "external/graph/types.h"
  21. #include "graph/op_desc.h"
  22. #include "graph/ge_tensor.h"
  23. #include "transformer/inc/transfer_shape_according_to_format.h"
  24. namespace ge {
  25. class NodeShapeTransUtils {
  26. public:
  27. bool CatchFormatAndShape();
  28. bool UpdateFormatAndShape();
  29. explicit NodeShapeTransUtils(OpDescPtr op_desc) : op_desc_(op_desc) {
  30. }
  31. ~NodeShapeTransUtils() {
  32. }
  33. private:
  34. std::map<std::string, Format> map_format_in_;
  35. std::map<std::string, Format> map_ori_format_in_;
  36. std::map<std::string, DataType> map_dtype_in_;
  37. std::map<std::string, Format> map_format_out_;
  38. std::map<std::string, Format> map_ori_format_out_;
  39. std::map<std::string, DataType> map_dtype_out_;
  40. OpDescPtr op_desc_;
  41. };
  42. } // namespace ge
  43. #endif // COMMON_GRAPH_UTILS_TRANSFORMER_UTILS_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示