You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

op_task.cc 41 kB

5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "single_op/task/op_task.h"
  17. #include <google/protobuf/extension_set.h>
  18. #include <chrono>
  19. #include <thread>
  20. #include "aicpu/common/aicpu_task_struct.h"
  21. #include "common/dump/dump_manager.h"
  22. #include "common/dump/dump_op.h"
  23. #include "common/profiling/profiling_manager.h"
  24. #include "common/formats/formats.h"
  25. #include "common/math/math_util.h"
  26. #include "framework/common/debug/log.h"
  27. #include "register/op_tiling.h"
  28. #include "runtime/rt.h"
  29. #include "build_task_utils.h"
  30. namespace ge {
  31. namespace {
  32. constexpr int kLaunchRetryTimes = 1000;
  33. constexpr size_t kMemcpyArgCount = 2;
  34. constexpr int kSleepTime = 10;
  35. constexpr uint64_t kReleaseFlag = 1;
  36. constexpr int kCopyNum = 2;
  37. constexpr uint64_t kInferSessionId = 0;
  38. void FreeHbm(void *var) {
  39. if (var) {
  40. (void)rtFree(var);
  41. }
  42. }
  43. } // namespace
  44. Status OpTask::OpenDump(rtStream_t stream) {
  45. if (DumpManager::GetInstance().GetDumpProperties(kInferSessionId).IsSingleOpNeedDump()) {
  46. GELOGI("Dump is open in single op, start to set dump info");
  47. std::vector<uint64_t> input_addrs;
  48. std::vector<uint64_t> output_adds;
  49. auto input_size = op_desc_->GetInputsSize();
  50. auto output_size = op_desc_->GetOutputsSize();
  51. uintptr_t *arg_base = nullptr;
  52. size_t arg_num = 0;
  53. GetIoAddr(arg_base, arg_num);
  54. if (arg_num < input_size + output_size) {
  55. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR,
  56. "[Check][Size]io_addrs_for_dump_ size %zu is not equal input and output size %zu",
  57. arg_num, input_size + output_size);
  58. REPORT_INNER_ERROR("E19999", "io_addrs_for_dump_ size %zu is not equal input and output size %zu",
  59. arg_num, input_size + output_size);
  60. return ACL_ERROR_GE_INTERNAL_ERROR;
  61. }
  62. for (size_t i = 0; i < input_size; i++) {
  63. uint64_t input_addr = arg_base[i];
  64. input_addrs.emplace_back(input_addr);
  65. }
  66. for (size_t j = 0; j < output_size; j++) {
  67. uint64_t output_addr = arg_base[input_size + j];
  68. output_adds.emplace_back(output_addr);
  69. }
  70. dump_op_.SetDumpInfo(DumpManager::GetInstance().GetDumpProperties(kInferSessionId),
  71. op_desc_, input_addrs, output_adds, stream);
  72. auto status = dump_op_.LaunchDumpOp();
  73. if (status != SUCCESS) {
  74. GELOGE(status, "[Launch][DumpOp] failed in single op.");
  75. return status;
  76. }
  77. return SUCCESS;
  78. }
  79. GELOGI("Dump is not open in single op");
  80. return SUCCESS;
  81. }
  82. void TbeOpTask::SetStubFunc(const std::string &name, const void *stub_func) {
  83. this->stub_name_ = name;
  84. this->stub_func_ = stub_func;
  85. this->task_name_ = name;
  86. }
  87. void TbeOpTask::SetKernelArgs(std::unique_ptr<uint8_t[]> &&args, size_t arg_size, uint32_t block_dim,
  88. const OpDescPtr &op_desc) {
  89. args_ = std::move(args);
  90. arg_size_ = arg_size;
  91. block_dim_ = block_dim;
  92. op_desc_ = op_desc;
  93. }
  94. void TbeOpTask::SetKernelWithHandleArgs(std::unique_ptr<uint8_t[]> &&args, size_t arg_size, uint32_t block_dim,
  95. const OpDescPtr &op_desc,
  96. const domi::KernelDefWithHandle &kernel_def_with_handle) {
  97. SetKernelArgs(std::move(args), arg_size, block_dim, op_desc);
  98. original_kernel_key_ = kernel_def_with_handle.original_kernel_key();
  99. node_info_ = kernel_def_with_handle.node_info();
  100. }
  101. void TbeOpTask::SetSmDesc(void *sm_desc) { sm_desc_ = sm_desc; }
  102. void OpTask::SetModelArgs(std::string model_name, uint32_t model_id) {
  103. model_name_ = model_name;
  104. model_id_ = model_id;
  105. }
  106. Status OpTask::GetProfilingArgs(TaskDescInfo &task_desc_info, uint32_t &model_id) {
  107. uint32_t task_id = 0;
  108. uint32_t stream_id = 0;
  109. auto rt_ret = rtGetTaskIdAndStreamID(&task_id, &stream_id);
  110. if (rt_ret != RT_ERROR_NONE) {
  111. GELOGE(RT_FAILED, "[Get][TaskIdAndStreamID] failed, ret: 0x%X.", rt_ret);
  112. REPORT_CALL_ERROR("E19999", "rtGetTaskIdAndStreamID failed, ret: 0x%X.", rt_ret);
  113. return RT_ERROR_TO_GE_STATUS(rt_ret);
  114. }
  115. GE_CHECK_NOTNULL(op_desc_);
  116. string op_name = op_desc_->GetName();
  117. GELOGD("Get profiling args of op [%s] end, task_id[%u], stream_id[%u].", op_name.c_str(), task_id, stream_id);
  118. model_id = model_id_;
  119. task_desc_info.model_name = model_name_;
  120. task_desc_info.block_dim = block_dim_;
  121. task_desc_info.task_id = task_id;
  122. task_desc_info.stream_id = stream_id;
  123. task_desc_info.op_name = op_name;
  124. task_desc_info.op_type = op_desc_->GetType();
  125. auto &prof_mgr = ProfilingManager::Instance();
  126. prof_mgr.GetOpInputOutputInfo(op_desc_, task_desc_info);
  127. return SUCCESS;
  128. }
  129. Status OpTask::UpdateRunInfo() {
  130. return UNSUPPORTED;
  131. }
  132. Status OpTask::DoUpdateArgTable(const SingleOpModelParam &param, bool keep_workspace) {
  133. auto addresses = BuildTaskUtils::GetAddresses(op_desc_, param, keep_workspace);
  134. auto all_addresses = BuildTaskUtils::JoinAddresses(addresses);
  135. uintptr_t *arg_base = nullptr;
  136. size_t arg_num = 0;
  137. GetIoAddr(arg_base, arg_num);
  138. if (arg_num < all_addresses.size()) {
  139. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR,
  140. "[Check][Size][%s] arg number mismatches, expect at least = %zu, but got = %zu.",
  141. op_desc_->GetName().c_str(), all_addresses.size(), arg_num);
  142. REPORT_INNER_ERROR("E19999", "%s arg number mismatches, expect at least = %zu, but got = %zu.",
  143. op_desc_->GetName().c_str(), all_addresses.size(), arg_num);
  144. return ACL_ERROR_GE_INTERNAL_ERROR;
  145. }
  146. for (void *addr : all_addresses) {
  147. *arg_base++ = reinterpret_cast<uintptr_t >(addr);
  148. }
  149. return SUCCESS;
  150. }
  151. Status OpTask::UpdateArgTable(const SingleOpModelParam &param) {
  152. return DoUpdateArgTable(param, true);
  153. }
  154. Status OpTask::LaunchKernel(const vector<GeTensorDesc> &input_desc,
  155. const vector<DataBuffer> &input_buffers,
  156. vector<GeTensorDesc> &output_desc,
  157. vector<DataBuffer> &output_buffers,
  158. rtStream_t stream) {
  159. return UNSUPPORTED;
  160. }
  161. const std::string &OpTask::GetTaskType() const { return kTaskTypeInvalid; }
  162. TbeOpTask::~TbeOpTask() {
  163. if (sm_desc_ != nullptr) {
  164. (void)rtMemFreeManaged(sm_desc_);
  165. }
  166. if (tiling_buffer_ != nullptr) {
  167. (void)rtFree(tiling_buffer_);
  168. }
  169. }
  170. const void *TbeOpTask::GetArgs() const { return args_.get(); }
  171. size_t TbeOpTask::GetArgSize() const { return arg_size_; }
  172. const std::string &TbeOpTask::GetStubName() const { return stub_name_; }
  173. const std::string &TbeOpTask::GetTaskType() const { return kTaskTypeAicore; }
  174. void TbeOpTask::SetHandle(void *handle) {
  175. this->handle_ = handle;
  176. }
  177. Status TbeOpTask::LaunchKernel(rtStream_t stream) {
  178. GELOGD("To invoke rtKernelLaunch. task = %s, block_dim = %u", this->stub_name_.c_str(), block_dim_);
  179. auto ret = DoLaunchKernel(stream);
  180. int retry_times = 0;
  181. while (ret != RT_ERROR_NONE && retry_times < kLaunchRetryTimes) {
  182. retry_times++;
  183. GELOGW("Retry after %d ms, retry_times: %d", kSleepTime, retry_times);
  184. std::this_thread::sleep_for(std::chrono::milliseconds(kSleepTime));
  185. ret = DoLaunchKernel(stream);
  186. }
  187. if (ret != RT_ERROR_NONE) {
  188. GELOGE(ret, "[Invoke][RtKernelLaunch] failed. ret = %d, task = %s", ret, this->stub_name_.c_str());
  189. REPORT_INNER_ERROR("E19999", "invoke rtKernelLaunch failed, ret = %d, task = %s", ret, this->stub_name_.c_str());
  190. return RT_ERROR_TO_GE_STATUS(ret);
  191. }
  192. GELOGI("[TASK_INFO] %s", this->stub_name_.c_str());
  193. return SUCCESS;
  194. }
  195. Status TbeOpTask::UpdateRunInfo() {
  196. // invoke OpParaCalculate
  197. GELOGD("Start to invoke OpParaCalculate.");
  198. optiling::OpRunInfo run_info;
  199. run_info.block_dim = 0;
  200. auto ret = optiling::OpParaCalculate(*node_, run_info);
  201. if (ret != GRAPH_SUCCESS) {
  202. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Invoke][OpParaCalculate] failed, ret = %u.", ret);
  203. REPORT_INNER_ERROR("E19999", "invoke OpParaCalculate failed, ret = %u.", ret);
  204. return ACL_ERROR_GE_INTERNAL_ERROR;
  205. }
  206. block_dim_ = run_info.block_dim;
  207. tiling_data_ = run_info.tiling_data.str();
  208. tiling_key_ = run_info.tiling_key;
  209. run_info_workspaces_ = run_info.workspaces;
  210. GELOGD("Done invoking OpParaCalculate successfully. block_dim = %u, tiling size = %zu, tiling_key = %u", block_dim_,
  211. tiling_data_.size(), tiling_key_);
  212. return SUCCESS;
  213. }
  214. Status TbeOpTask::UpdateTensorDesc(const GeTensorDesc &src_tensor, GeTensorDesc &dst_tensor) {
  215. int64_t storage_format_val = static_cast<Format>(FORMAT_RESERVED);
  216. (void)AttrUtils::GetInt(src_tensor, ge::ATTR_NAME_STORAGE_FORMAT, storage_format_val);
  217. auto storage_format = static_cast<Format>(storage_format_val);
  218. if (storage_format == FORMAT_RESERVED) {
  219. GELOGD("Storage format not set. update shape to [%s], and original shape to [%s]",
  220. src_tensor.GetShape().ToString().c_str(), src_tensor.GetOriginShape().ToString().c_str());
  221. dst_tensor.SetShape(src_tensor.GetShape());
  222. dst_tensor.SetOriginShape(src_tensor.GetOriginShape());
  223. } else {
  224. std::vector<int64_t> storage_shape;
  225. if (!AttrUtils::GetListInt(src_tensor, ge::ATTR_NAME_STORAGE_SHAPE, storage_shape)) {
  226. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Get][ListInt]failed while storage_format was set.");
  227. return ACL_ERROR_GE_INTERNAL_ERROR;
  228. }
  229. GELOGD("Storage format set. update shape to [%s], and original shape to [%s]",
  230. GeShape(storage_shape).ToString().c_str(), src_tensor.GetShape().ToString().c_str());
  231. dst_tensor.SetShape(GeShape(std::move(storage_shape)));
  232. dst_tensor.SetOriginShape(src_tensor.GetShape());
  233. }
  234. return SUCCESS;
  235. }
  236. Status TbeOpTask::UpdateNodeByShape(const vector<GeTensorDesc> &input_desc, const vector<GeTensorDesc> &output_desc) {
  237. auto op_desc = node_->GetOpDesc();
  238. GE_CHECK_NOTNULL(op_desc);
  239. // Set runtime shape to node
  240. for (size_t i = 0; i < input_desc.size(); ++i) {
  241. auto tensor_desc = op_desc->MutableInputDesc(i);
  242. auto &runtime_tensor_desc = input_desc[i];
  243. GE_CHECK_NOTNULL(tensor_desc);
  244. GE_CHK_STATUS_RET(UpdateTensorDesc(runtime_tensor_desc, *tensor_desc));
  245. }
  246. for (size_t i = 0; i < output_desc.size(); ++i) {
  247. auto tensor_desc = op_desc->MutableOutputDesc(i);
  248. auto &runtime_tensor_desc = output_desc[i];
  249. GE_CHECK_NOTNULL(tensor_desc);
  250. GE_CHK_STATUS_RET(UpdateTensorDesc(runtime_tensor_desc, *tensor_desc));
  251. }
  252. return SUCCESS;
  253. }
  254. Status TbeOpTask::EnableDynamicSupport(const NodePtr &node, void *tiling_buffer, uint32_t max_tiling_size) {
  255. if (tiling_buffer != nullptr) {
  256. uintptr_t *arg_base = nullptr;
  257. size_t arg_num = 0;
  258. GetIoAddr(arg_base, arg_num);
  259. GE_CHECK_NOTNULL(node);
  260. GE_CHECK_NOTNULL(node->GetOpDesc());
  261. uint32_t inputs_num = node->GetOpDesc()->GetInputsSize();
  262. uint32_t outputs_num = node->GetOpDesc()->GetOutputsSize();
  263. uint32_t workspace_nums = node->GetOpDesc()->GetWorkspace().size();
  264. uint32_t tiling_index = inputs_num + outputs_num + workspace_nums;
  265. if (arg_num == 0 || arg_num < tiling_index) {
  266. GELOGE(ACL_ERROR_GE_INTERNAL_ERROR, "[Check][Size]Tiling index %u, arg number %zu is invalid.",
  267. tiling_index, arg_num);
  268. return ACL_ERROR_GE_INTERNAL_ERROR;
  269. }
  270. arg_base[tiling_index] = reinterpret_cast<uintptr_t>(tiling_buffer);
  271. }
  272. node_ = node;
  273. tiling_buffer_ = tiling_buffer;
  274. max_tiling_size_ = max_tiling_size;
  275. return SUCCESS;
  276. }
  277. Status TbeOpTask::AllocateWorkspaces(const vector<int64_t> &workspace_sizes) {
  278. static const std::string kPurpose("malloc workspace memory for dynamic op.");
  279. workspaces_.clear();
  280. if (workspace_sizes.empty()) {
  281. GELOGD("No need to allocate workspace.");
  282. return SUCCESS;
  283. }
  284. int64_t total_size = 0;
  285. std::vector<int64_t> ws_offsets;
  286. for (auto ws_size : workspace_sizes) {
  287. // alignment and padding should be done in OpParaCalculate
  288. if (CheckInt64AddOverflow(total_size, ws_size) != SUCCESS) {
  289. return ACL_ERROR_GE_INTERNAL_ERROR;
  290. }
  291. ws_offsets.emplace_back(total_size);
  292. total_size += ws_size;
  293. }
  294. GELOGD("Total workspace size is %ld", total_size);
  295. GE_CHECK_NOTNULL(stream_resource_);
  296. auto ws_base = stream_resource_->MallocMemory(kPurpose, static_cast<size_t>(total_size));
  297. if (ws_base == nullptr) {
  298. GELOGE(ACL_ERROR_GE_MEMORY_ALLOCATION, "[Malloc][Memory] failed, size: %ld", total_size);
  299. REPORT_INNER_ERROR("E19999", "MallocMemory failed, size: %ld", total_size);
  300. return ACL_ERROR_GE_MEMORY_ALLOCATION;
  301. }
  302. GELOGD("Done allocating workspace memory successfully.");
  303. for (auto ws_offset : ws_offsets) {
  304. workspaces_.emplace_back(ws_base + ws_offset);
  305. }
  306. return SUCCESS;
  307. }
  308. Status TbeOpTask::LaunchKernel(const vector<GeTensorDesc> &input_desc,
  309. const vector<DataBuffer> &input_buffers,
  310. vector<GeTensorDesc> &output_desc,
  311. vector<DataBuffer> &output_buffers,
  312. rtStream_t stream) {
  313. GELOGD("[%s] Start to launch kernel", node_->GetName().c_str());
  314. GE_CHK_STATUS_RET_NOLOG(UpdateNodeByShape(input_desc, output_desc));
  315. GE_CHK_STATUS_RET_NOLOG(UpdateRunInfo());
  316. GE_CHK_STATUS_RET(AllocateWorkspaces(run_info_workspaces_), "[Allocate][Workspaces] failed.");
  317. std::vector<void *> args;
  318. for (auto &buffer : input_buffers) {
  319. args.emplace_back(buffer.data);
  320. }
  321. for (auto &buffer : output_buffers) {
  322. args.emplace_back(buffer.data);
  323. }
  324. for (auto &buffer : workspaces_) {
  325. args.emplace_back(buffer);
  326. }
  327. if (tiling_buffer_ != nullptr) {
  328. GELOGD("[%s] Start to copy tiling info. size = %zu", node_->GetName().c_str(), tiling_data_.size());
  329. GE_CHK_RT_RET(rtMemcpyAsync(tiling_buffer_, max_tiling_size_, tiling_data_.data(), tiling_data_.size(),
  330. RT_MEMCPY_HOST_TO_DEVICE_EX, stream));
  331. args.emplace_back(tiling_buffer_);
  332. }
  333. GELOGD("Dst size is %zu, src size is %zu.", arg_size_, args.size() * sizeof(void *));
  334. // node with workspace: build can not get size of workspace, need to update arg_size_ when execute
  335. if (arg_size_ < (args.size() * sizeof(void *))) {
  336. size_t temp_size = args.size() * sizeof(void *);
  337. GELOGD("Need to reset size of args_ from %zu to %zu.", arg_size_, temp_size);
  338. args_.reset(new(std::nothrow) uint8_t[temp_size]());
  339. GE_CHECK_NOTNULL(args_);
  340. arg_size_ = temp_size;
  341. }
  342. if (memcpy_s(args_.get(), arg_size_, args.data(), args.size() * sizeof(void *)) != EOK) {
  343. GELOGE(ACL_ERROR_GE_MEMORY_OPERATE_FAILED, "[Update][KernelArgs] failed for [%s].", node_->GetName().c_str());
  344. REPORT_INNER_ERROR("E19999", "update kernel args failed for %s.", node_->GetName().c_str());
  345. return ACL_ERROR_GE_MEMORY_OPERATE_FAILED;
  346. }
  347. GELOGD("[%s] Start to invoke rtKernelLaunch", node_->GetName().c_str());
  348. GE_CHK_STATUS_RET(DoLaunchKernel(stream), "Failed to do launch kernel.");
  349. return SUCCESS;
  350. }
  351. Status TbeOpTask::DoLaunchKernel(rtStream_t stream) {
  352. auto *sm_desc = reinterpret_cast<rtSmDesc_t *>(sm_desc_);
  353. if (handle_ == nullptr) {
  354. GE_CHK_RT_RET(rtKernelLaunch(stub_func_, block_dim_, args_.get(), static_cast<uint32_t>(arg_size_),
  355. sm_desc, stream));
  356. } else {
  357. std::string dev_func = original_kernel_key_ + "_" + std::to_string(tiling_key_);
  358. std::string kernel_info = node_info_ + "/" + std::to_string(tiling_key_);
  359. GE_CHK_RT_RET(rtKernelLaunchWithHandle(handle_, dev_func.c_str(), block_dim_, args_.get(),
  360. static_cast<uint32_t>(arg_size_), sm_desc, stream, kernel_info.c_str()));
  361. }
  362. return SUCCESS;
  363. }
  364. void TbeOpTask::GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) {
  365. arg_base = reinterpret_cast<uintptr_t *>(args_.get());
  366. arg_count = arg_size_ / sizeof(void *);
  367. if (tiling_buffer_ != nullptr) {
  368. --arg_count;
  369. }
  370. }
  371. AiCpuBaseTask::~AiCpuBaseTask() {
  372. if (ext_info_addr_dev_ != nullptr) {
  373. (void)rtFree(ext_info_addr_dev_);
  374. }
  375. }
  376. Status AiCpuBaseTask::SetExtInfoAndType(const std::string &kernel_ext_info, uint64_t kernel_id) {
  377. if (kernel_ext_info.empty()) {
  378. GELOGI("Kernel_ext_info is empty, no need copy to device.");
  379. return SUCCESS;
  380. }
  381. int32_t unknown_shape_type_val = 0;
  382. (void) AttrUtils::GetInt(op_desc_, ::ge::ATTR_NAME_UNKNOWN_SHAPE_TYPE, unknown_shape_type_val);
  383. GELOGD("Get unknown_type is %d.", unknown_shape_type_val);
  384. unknown_type_ = static_cast<UnknowShapeOpType>(unknown_shape_type_val);
  385. aicpu_ext_handle_.reset(new(std::nothrow) ::ge::hybrid::AicpuExtInfoHandler(op_desc_->GetName(),
  386. num_inputs_,
  387. num_outputs_,
  388. unknown_type_));
  389. GE_CHK_BOOL_RET_STATUS(aicpu_ext_handle_ != nullptr, ACL_ERROR_GE_MEMORY_ALLOCATION,
  390. "[Malloc][Memory] failed for aicpu_ext_handle!");
  391. Status ret = aicpu_ext_handle_->Parse(kernel_ext_info);
  392. if (ret != SUCCESS) {
  393. GELOGE(ret, "[Parse][Param:kernel_ext_info] failed, kernel_ext_info_size=%zu.", kernel_ext_info.size());
  394. REPORT_INNER_ERROR("E19999",
  395. "Parse Param:kernel_ext_info failed, kernel_ext_info_size=%zu.", kernel_ext_info.size());
  396. return ret;
  397. }
  398. GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateSessionInfo(ULLONG_MAX, kernel_id, false),
  399. "[Update][SessionInfo] failed.");
  400. GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateExecuteMode(true), "[Update][ExecuteMode] failed.");
  401. GE_CHK_RT_RET(rtMalloc(&ext_info_addr_dev_, aicpu_ext_handle_->GetExtInfoLen(), RT_MEMORY_HBM));
  402. GE_CHK_RT_RET(rtMemcpy(ext_info_addr_dev_, aicpu_ext_handle_->GetExtInfoLen(),
  403. aicpu_ext_handle_->GetExtInfo(), aicpu_ext_handle_->GetExtInfoLen(),
  404. RT_MEMCPY_HOST_TO_DEVICE));
  405. return SUCCESS;
  406. }
  407. Status AiCpuBaseTask::SetInputConst() {
  408. input_is_const_.clear();
  409. const vector<bool> v_is_input_const = op_desc_->GetIsInputConst();
  410. for (size_t i = 0; i < op_desc_->GetAllInputsSize(); ++i) {
  411. const GeTensorDescPtr tensor_desc = op_desc_->MutableInputDesc(static_cast<uint32_t>(i));
  412. if (tensor_desc == nullptr) {
  413. GELOGD("SingleOp: %s, Index: %zu, has no input", op_desc_->GetName().c_str(), i);
  414. continue;
  415. }
  416. if (i < v_is_input_const.size() && v_is_input_const[i]) {
  417. GELOGD("SingleOp: %s, Index: %zu, input is const", op_desc_->GetName().c_str(), i);
  418. input_is_const_.push_back(true);
  419. continue;
  420. }
  421. input_is_const_.push_back(false);
  422. }
  423. return SUCCESS;
  424. }
  425. Status AiCpuBaseTask::UpdateExtInfo(const std::vector<GeTensorDesc> &input_desc,
  426. std::vector<GeTensorDesc> &output_desc,
  427. rtStream_t stream) {
  428. GELOGI("Update ext info begin, unknown_type=%d.", unknown_type_);
  429. GE_CHECK_NOTNULL(aicpu_ext_handle_);
  430. GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateExecuteMode(false), "[Update][ExecuteMode] failed.");
  431. if (num_inputs_ == 0 && num_outputs_ == 0) {
  432. GELOGI("No input and output, no need update ext info.");
  433. return SUCCESS;
  434. }
  435. size_t non_const_index = 0;
  436. for (size_t input_index = 0; input_index < num_inputs_; input_index++) {
  437. if (input_index < input_is_const_.size() && input_is_const_[input_index]) {
  438. // get input_desc from op_desc if const input, num_inputs_ is op_desc_ input_size
  439. auto const_input_desc = op_desc_->MutableInputDesc(static_cast<uint32_t>(input_index));
  440. GE_CHECK_NOTNULL(const_input_desc);
  441. GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateInputShapeAndType(input_index, *const_input_desc),
  442. "[Update][InputShapeAndType] failed, input_index:%zu.", input_index);
  443. continue;
  444. }
  445. GE_CHK_BOOL_RET_STATUS(non_const_index < input_desc.size(), ACL_ERROR_GE_PARAM_INVALID,
  446. "[Check][Size]Input_desc size is %zu, but get non_const_index is %zu", input_desc.size(), non_const_index);
  447. GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateInputShapeAndType(input_index, input_desc[non_const_index]),
  448. "[Update][InputShapeAndType]failed, input_index:%zu.", input_index);
  449. if (DumpManager::GetInstance().GetDumpProperties(kInferSessionId).IsSingleOpNeedDump()) {
  450. GE_CHK_STATUS_RET(op_desc_->UpdateInputDesc(input_index, input_desc[non_const_index]),
  451. "AiCpuTask Update [%zu]th input desc failed.",input_index);
  452. }
  453. non_const_index++;
  454. }
  455. if (unknown_type_ != DEPEND_COMPUTE) {
  456. for (size_t j = 0; j < num_outputs_; ++j) {
  457. GE_CHK_STATUS_RET(aicpu_ext_handle_->UpdateOutputShapeAndType(j, output_desc[j]),
  458. "[Update][OutputShapeAndType] failed, Output:%zu.", j);
  459. if (DumpManager::GetInstance().GetDumpProperties(kInferSessionId).IsSingleOpNeedDump()) {
  460. GE_CHK_STATUS_RET(op_desc_->UpdateOutputDesc(j, output_desc[j]),
  461. "AiCpuTask Update [%zu]th output desc failed.",j);
  462. }
  463. }
  464. }
  465. GE_CHK_RT_RET(rtMemcpyAsync(ext_info_addr_dev_,
  466. aicpu_ext_handle_->GetExtInfoLen(), // check size
  467. aicpu_ext_handle_->GetExtInfo(),
  468. aicpu_ext_handle_->GetExtInfoLen(),
  469. RT_MEMCPY_HOST_TO_DEVICE_EX,
  470. stream));
  471. GELOGI("Update ext info end.");
  472. return SUCCESS;
  473. }
  474. Status AiCpuBaseTask::UpdateOutputShape(vector<GeTensorDesc> &output_desc) {
  475. if (num_outputs_ == 0) {
  476. GELOGD("AiCpuBaseTask output_num is 0, no need update output shape.");
  477. return SUCCESS;
  478. }
  479. GELOGD("Start to update DEPEND_SHAPE_RANGE AiCpuBaseTask outputshape.");
  480. GE_CHK_RT_RET(rtMemcpy(aicpu_ext_handle_->GetExtInfo(), aicpu_ext_handle_->GetExtInfoLen(), ext_info_addr_dev_,
  481. aicpu_ext_handle_->GetExtInfoLen(), RT_MEMCPY_DEVICE_TO_HOST));
  482. for (size_t i = 0; i < num_outputs_; ++i) {
  483. GeShape shape;
  484. DataType data_type;
  485. aicpu_ext_handle_->GetOutputShapeAndType(i, shape, data_type);
  486. GE_CHK_STATUS_RET(UpdateShapeToOutputDesc(shape, output_desc[i]),
  487. "[Update][ShapeToOutputDesc] failed, output:%zu.", i);
  488. if (DumpManager::GetInstance().GetDumpProperties(kInferSessionId).IsSingleOpNeedDump()) {
  489. GE_CHK_STATUS_RET(op_desc_->UpdateOutputDesc(i, output_desc[i]), "[Update][OutputDesc] failed, output:%zu.", i);
  490. }
  491. }
  492. GELOGD("Update DEPEND_SHAPE_RANGE AiCpuBaseTask outputshape finished.");
  493. return SUCCESS;
  494. }
  495. Status AiCpuBaseTask::UpdateShapeToOutputDesc(const GeShape &shape_new, GeTensorDesc &output_desc) {
  496. auto shape_old = output_desc.GetShape();
  497. output_desc.SetShape(shape_new);
  498. GELOGD("Update AiCpuBaseTask shape from %s to %s", shape_old.ToString().c_str(), shape_new.ToString().c_str());
  499. auto origin_shape_old = output_desc.GetOriginShape();
  500. auto origin_format = output_desc.GetOriginFormat();
  501. auto format = output_desc.GetFormat();
  502. if (origin_format == format) {
  503. output_desc.SetOriginShape(shape_new);
  504. return SUCCESS;
  505. }
  506. std::vector<int64_t> origin_dims_new;
  507. auto trans_ret = formats::TransShape(format, shape_new.GetDims(),
  508. output_desc.GetDataType(), origin_format, origin_dims_new);
  509. GE_CHK_STATUS_RET(trans_ret,
  510. "[Trans][Shape] failed, AiCpuTask originFormat[%d] is not same as format[%d], shape=%s.",
  511. origin_format, format, shape_new.ToString().c_str());
  512. auto origin_shape_new = GeShape(origin_dims_new);
  513. output_desc.SetOriginShape(origin_shape_new);
  514. GELOGD("AiCpuTask originFormat[%d] is not same as format[%d], need update from %s ro %s.",
  515. origin_format, format, origin_shape_old.ToString().c_str(), origin_shape_new.ToString().c_str());
  516. return SUCCESS;
  517. }
  518. Status AiCpuBaseTask::UpdateIoAddr(const vector<DataBuffer> &inputs, const vector<DataBuffer> &outputs) {
  519. uintptr_t *arg_base = nullptr;
  520. size_t arg_num = 0;
  521. GetIoAddr(arg_base, arg_num);
  522. // input number and output number was check in ValidateParams
  523. size_t non_const_index = 0;
  524. for (size_t input_index = 0; input_index < num_inputs_; input_index++) {
  525. if (input_index < input_is_const_.size() && input_is_const_[input_index]) {
  526. // const input no need update addr
  527. GE_CHECK_NOTNULL(arg_base);
  528. GELOGD("AICpuTask input[%zu] addr = %lu", input_index, *arg_base);
  529. arg_base++;
  530. continue;
  531. }
  532. GE_CHK_BOOL_RET_STATUS(non_const_index < inputs.size(), ACL_ERROR_GE_PARAM_INVALID,
  533. "[Check][Size] Input size is %zu, but get non_const_index is %zu", inputs.size(), non_const_index);
  534. auto addr = inputs[non_const_index].data;
  535. GE_CHECK_NOTNULL(addr);
  536. GELOGD("AICpuTask input[%zu] addr = %p", input_index, addr);
  537. *arg_base++ = reinterpret_cast<uintptr_t>(addr);
  538. non_const_index++;
  539. }
  540. for (size_t i = 0; i < outputs.size(); ++i) {
  541. auto addr = outputs[i].data;
  542. GE_CHECK_NOTNULL(addr);
  543. GELOGD("AICpuTask output[%zu] addr = %p", i, addr);
  544. *arg_base++ = reinterpret_cast<uintptr_t>(addr);
  545. }
  546. return SUCCESS;
  547. }
  548. AiCpuTask::~AiCpuTask() {
  549. FreeHbm(args_);
  550. FreeHbm(io_addr_);
  551. if (dynamic_flag_) {
  552. FreeHbm(workspace_addr_);
  553. }
  554. FreeHbm(copy_workspace_buf_);
  555. FreeHbm(copy_ioaddr_dev_);
  556. FreeHbm(copy_input_release_flag_dev_);
  557. FreeHbm(copy_input_data_size_dev_);
  558. FreeHbm(copy_input_src_dev_);
  559. FreeHbm(copy_input_dst_dev_);
  560. FreeHbm(copy_task_args_buf_);
  561. for (auto summary : output_summary_) {
  562. FreeHbm(summary);
  563. }
  564. for (auto out_shape : out_shape_hbm_) {
  565. FreeHbm(out_shape);
  566. }
  567. }
  568. Status AiCpuTask::LaunchKernel(rtStream_t stream) {
  569. GELOGD("Start to launch kernel. task = %s", this->op_type_.c_str());
  570. auto ret = rtMemcpyAsync(io_addr_,
  571. io_addr_size_,
  572. io_addr_host_.data(),
  573. io_addr_host_.size() * sizeof(void *),
  574. RT_MEMCPY_HOST_TO_DEVICE_EX,
  575. stream);
  576. if (ret != RT_ERROR_NONE) {
  577. GELOGE(ret, "[MemcpyAsync][Date] failed. ret = %d, task = %s", ret, this->op_type_.c_str());
  578. REPORT_CALL_ERROR("E19999", "rtMemcpyAsync data failed, ret = %d, task = %s", ret, this->op_type_.c_str());
  579. return RT_ERROR_TO_GE_STATUS(ret);
  580. }
  581. GELOGI("To invoke rtKernelLaunchEx. task = %s", this->op_type_.c_str());
  582. ret = rtKernelLaunchEx(args_, arg_size_, 0, stream);
  583. if (ret != RT_ERROR_NONE) {
  584. GELOGE(ret, "[Invoke][rtKernelLaunch] failed. ret = %d, task = %s", ret, this->op_type_.c_str());
  585. REPORT_CALL_ERROR("E19999", "invoke rtKernelLaunchEx failed, ret = %d, task = %s", ret, this->op_type_.c_str());
  586. return RT_ERROR_TO_GE_STATUS(ret);
  587. }
  588. GELOGI("[TASK_INFO] %lu/%s", kernel_id_, op_type_.c_str());
  589. GELOGD("Done launch kernel successfully. task = %s", this->op_type_.c_str());
  590. return SUCCESS;
  591. }
  592. Status AiCpuTask::PrepareCopyInputs(vector<DataBuffer> &outputs) {
  593. std::vector<uint64_t> copy_input_release_flag;
  594. std::vector<uint64_t> copy_input_data_size;
  595. std::vector<uint64_t> copy_input_src;
  596. std::vector<uint64_t> copy_input_dst;
  597. for (size_t i = 0; i < num_outputs_; ++i) {
  598. const auto &summary = output_summary_host_[i];
  599. GELOGI("Node out[%zu] summary, shape data=0x%lx, shape data size=%lu, raw data=0x%lx, raw data size=%lu.",
  600. i, summary.shape_data_ptr, summary.shape_data_size,
  601. summary.raw_data_ptr, summary.raw_data_size);
  602. auto output = outputs[i];
  603. copy_input_release_flag.emplace_back(kReleaseFlag);
  604. if (summary.raw_data_size > 0) {
  605. copy_input_data_size.emplace_back(output.length);
  606. } else {
  607. copy_input_data_size.emplace_back(summary.raw_data_size);
  608. }
  609. copy_input_src.emplace_back(summary.raw_data_ptr);
  610. copy_input_dst.emplace_back(reinterpret_cast<uintptr_t>(output.data));
  611. const auto &shape_buffer = out_shape_hbm_[i];
  612. copy_input_release_flag.emplace_back(kReleaseFlag);
  613. copy_input_data_size.emplace_back(summary.shape_data_size);
  614. copy_input_src.emplace_back(summary.shape_data_ptr);
  615. copy_input_dst.emplace_back(reinterpret_cast<uintptr_t>(shape_buffer));
  616. }
  617. const size_t copy_input_buf_len = num_outputs_ * kCopyNum * sizeof(uint64_t);
  618. GE_CHK_RT_RET(rtMemcpy(copy_input_release_flag_dev_, copy_input_buf_len,
  619. copy_input_release_flag.data(), copy_input_buf_len, RT_MEMCPY_HOST_TO_DEVICE));
  620. GE_CHK_RT_RET(rtMemcpy(copy_input_data_size_dev_, copy_input_buf_len,
  621. copy_input_data_size.data(), copy_input_buf_len, RT_MEMCPY_HOST_TO_DEVICE));
  622. GE_CHK_RT_RET(rtMemcpy(copy_input_src_dev_, copy_input_buf_len,
  623. copy_input_src.data(), copy_input_buf_len, RT_MEMCPY_HOST_TO_DEVICE));
  624. GE_CHK_RT_RET(rtMemcpy(copy_input_dst_dev_, copy_input_buf_len,
  625. copy_input_dst.data(), copy_input_buf_len, RT_MEMCPY_HOST_TO_DEVICE));
  626. return SUCCESS;
  627. }
  628. Status AiCpuTask::ReadResultSummaryAndPrepareMemory() {
  629. for (size_t i = 0; i < num_outputs_; ++i) {
  630. auto &result_summary = output_summary_host_[i];
  631. GE_CHK_RT_RET(rtMemcpy(&result_summary, sizeof(aicpu::FWKAdapter::ResultSummary),
  632. output_summary_[i], sizeof(aicpu::FWKAdapter::ResultSummary),
  633. RT_MEMCPY_DEVICE_TO_HOST));
  634. auto shape_data_size = result_summary.shape_data_size;
  635. void *shape_buffer = nullptr;
  636. if (shape_data_size > 0) {
  637. GE_CHK_RT_RET(rtMalloc(&shape_buffer, shape_data_size, RT_MEMORY_HBM));
  638. }
  639. out_shape_hbm_.emplace_back(shape_buffer);
  640. }
  641. return SUCCESS;
  642. }
  643. Status AiCpuTask::CopyDataToHbm(vector<DataBuffer> &outputs,
  644. rtStream_t stream) {
  645. GE_CHK_STATUS_RET_NOLOG(PrepareCopyInputs(outputs));
  646. GE_CHK_RT_RET(rtKernelLaunchEx(copy_task_args_buf_, sizeof(STR_FWK_OP_KERNEL),
  647. RT_KERNEL_DEFAULT, stream));
  648. GE_CHK_RT_RET(rtStreamSynchronize(stream));
  649. return SUCCESS;
  650. }
  651. Status AiCpuTask::UpdateShapeByHbmBuffer(vector<GeTensorDesc> &output_desc) {
  652. for (size_t i = 0; i < num_outputs_; ++i) {
  653. const auto &result_summary = output_summary_host_[i];
  654. std::vector<int64_t> shape_dims;
  655. if (result_summary.shape_data_size > 0) {
  656. const auto &shape_hbm = out_shape_hbm_[i];
  657. uint32_t dim_num = result_summary.shape_data_size / sizeof(int64_t);
  658. std::unique_ptr<int64_t[]> shape_addr(new (std::nothrow) int64_t[dim_num]());
  659. GE_CHECK_NOTNULL(shape_addr);
  660. GE_CHK_RT_RET(rtMemcpy(shape_addr.get(), result_summary.shape_data_size, shape_hbm,
  661. result_summary.shape_data_size, RT_MEMCPY_DEVICE_TO_HOST));
  662. for (uint32_t dim_idx = 0; dim_idx < dim_num; ++dim_idx) {
  663. shape_dims.emplace_back(shape_addr[dim_idx]);
  664. GELOGD("Node [%zu]th output dim[%u]=%ld.", i, dim_idx, shape_addr[dim_idx]);
  665. }
  666. }
  667. GE_CHK_STATUS_RET(UpdateShapeToOutputDesc(GeShape(shape_dims), output_desc[i]),
  668. "[Update][ShapeToOutputDesc] failed , output:%zu.", i);
  669. if (DumpManager::GetInstance().GetDumpProperties(kInferSessionId).IsSingleOpNeedDump()) {
  670. GE_CHK_STATUS_RET(op_desc_->UpdateOutputDesc(i, output_desc[i]), "[Update][OutputDesc] failed, output:%zu.", i);
  671. }
  672. }
  673. return SUCCESS;
  674. }
  675. Status AiCpuTask::UpdateShapeAndDataByResultSummary(vector<GeTensorDesc> &output_desc,
  676. vector<DataBuffer> &outputs,
  677. rtStream_t stream) {
  678. if (num_outputs_ == 0) {
  679. GELOGI("Output num is 0, there is no need to update the output and size.");
  680. return SUCCESS;
  681. }
  682. GELOGI("Update shape and data by result summary begin.");
  683. for (auto out_shape : out_shape_hbm_) {
  684. FreeHbm(out_shape);
  685. }
  686. out_shape_hbm_.clear();
  687. GE_CHK_STATUS_RET(ReadResultSummaryAndPrepareMemory(),
  688. "[Read][ResultSummaryAndPrepareMemory] failed.");
  689. GE_CHK_STATUS_RET(CopyDataToHbm(outputs, stream),
  690. "[Copy][DataToHbm] failed.");
  691. GE_CHK_STATUS_RET(UpdateShapeByHbmBuffer(output_desc),
  692. "[Update][ShapeByHbmBuffer] failed.");
  693. for (auto out_shape : out_shape_hbm_) {
  694. FreeHbm(out_shape);
  695. }
  696. out_shape_hbm_.clear();
  697. GELOGI("Update shape and data by result summary end.");
  698. return SUCCESS;
  699. }
  700. Status AiCpuTask::InitForSummaryAndCopy() {
  701. if (unknown_type_ != DEPEND_COMPUTE || num_outputs_ == 0) {
  702. GELOGI("Unknown_type is %d, output num is %zu.", unknown_type_, num_outputs_);
  703. return SUCCESS;
  704. }
  705. output_summary_.resize(num_outputs_);
  706. constexpr auto result_summary_size = sizeof(aicpu::FWKAdapter::ResultSummary);
  707. for (size_t i = 0; i < num_outputs_; ++i) {
  708. GE_CHK_RT_RET(rtMalloc(&output_summary_[i], result_summary_size, RT_MEMORY_HBM));
  709. }
  710. output_summary_host_.resize(num_outputs_);
  711. const size_t copy_input_buf_len = num_outputs_ * kCopyNum * sizeof(uint64_t);
  712. GE_CHK_RT_RET(rtMalloc(&copy_input_release_flag_dev_, copy_input_buf_len, RT_MEMORY_HBM));
  713. GE_CHK_RT_RET(rtMalloc(&copy_input_data_size_dev_, copy_input_buf_len, RT_MEMORY_HBM));
  714. GE_CHK_RT_RET(rtMalloc(&copy_input_src_dev_, copy_input_buf_len, RT_MEMORY_HBM));
  715. GE_CHK_RT_RET(rtMalloc(&copy_input_dst_dev_, copy_input_buf_len, RT_MEMORY_HBM));
  716. GE_CHK_RT_RET(rtMalloc(&copy_task_args_buf_, sizeof(STR_FWK_OP_KERNEL), RT_MEMORY_HBM));
  717. std::vector<uint64_t> copy_io_addr;
  718. copy_io_addr.emplace_back(reinterpret_cast<uintptr_t>(copy_input_release_flag_dev_));
  719. copy_io_addr.emplace_back(reinterpret_cast<uintptr_t>(copy_input_data_size_dev_));
  720. copy_io_addr.emplace_back(reinterpret_cast<uintptr_t>(copy_input_src_dev_));
  721. copy_io_addr.emplace_back(reinterpret_cast<uintptr_t>(copy_input_dst_dev_));
  722. const auto copy_io_addr_size = sizeof(uint64_t) * copy_io_addr.size();
  723. GE_CHK_RT_RET(rtMalloc(&copy_ioaddr_dev_, copy_io_addr_size, RT_MEMORY_HBM));
  724. GE_CHK_RT_RET(rtMemcpy(copy_ioaddr_dev_, copy_io_addr_size,
  725. copy_io_addr.data(), copy_io_addr_size, RT_MEMCPY_HOST_TO_DEVICE));
  726. return SUCCESS;
  727. }
  728. Status AiCpuTask::SetMemCopyTask(const domi::KernelExDef &kernel_def) {
  729. if (kernel_def.args_size() > sizeof(STR_FWK_OP_KERNEL)) {
  730. GELOGE(ACL_ERROR_GE_PARAM_INVALID, "[Check][Size]sizeof STR_FWK_OP_KERNEL is: %lu, but args_size is: %d",
  731. sizeof(STR_FWK_OP_KERNEL), kernel_def.args_size());
  732. REPORT_INNER_ERROR("E19999", "[sizeof STR_FWK_OP_KERNEL is: %lu, but args_size is: %d",
  733. sizeof(STR_FWK_OP_KERNEL), kernel_def.args_size());
  734. return ACL_ERROR_GE_PARAM_INVALID;
  735. }
  736. GE_CHK_RT_RET(rtMalloc(&copy_workspace_buf_, kernel_def.task_info_size(), RT_MEMORY_HBM));
  737. GE_CHK_RT_RET(rtMemcpy(copy_workspace_buf_, kernel_def.task_info_size(),
  738. kernel_def.task_info().data(), kernel_def.task_info_size(), RT_MEMCPY_HOST_TO_DEVICE));
  739. STR_FWK_OP_KERNEL aicpu_task = {0};
  740. auto sec_ret = memcpy_s(&aicpu_task, sizeof(STR_FWK_OP_KERNEL),
  741. kernel_def.args().data(), kernel_def.args().size());
  742. if (sec_ret != EOK) {
  743. GELOGE(ACL_ERROR_GE_MEMORY_OPERATE_FAILED, "[Update][TaskArgs] failed, ret: %d", sec_ret);
  744. REPORT_INNER_ERROR("E19999", "update STR_FWK_OP_KERNEL args failed because memcpy_s return %d.", sec_ret);
  745. return ACL_ERROR_GE_MEMORY_OPERATE_FAILED;
  746. }
  747. aicpu_task.fwkKernelBase.fwk_kernel.inputOutputAddr = reinterpret_cast<uintptr_t>(copy_ioaddr_dev_);
  748. aicpu_task.fwkKernelBase.fwk_kernel.workspaceBaseAddr = reinterpret_cast<uintptr_t>(copy_workspace_buf_);
  749. aicpu_task.fwkKernelBase.fwk_kernel.extInfoAddr = 0;
  750. aicpu_task.fwkKernelBase.fwk_kernel.extInfoLen = 0;
  751. GE_CHK_RT_RET(rtMemcpy(copy_task_args_buf_, sizeof(STR_FWK_OP_KERNEL),
  752. &aicpu_task, sizeof(STR_FWK_OP_KERNEL), RT_MEMCPY_HOST_TO_DEVICE));
  753. return SUCCESS;
  754. }
  755. Status AiCpuTask::LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
  756. const std::vector<DataBuffer> &input_buffers,
  757. std::vector<GeTensorDesc> &output_desc,
  758. std::vector<DataBuffer> &output_buffers,
  759. rtStream_t stream) {
  760. GE_CHK_STATUS_RET_NOLOG(UpdateExtInfo(input_desc, output_desc, stream));
  761. if (unknown_type_ == DEPEND_COMPUTE) {
  762. std::vector<DataBuffer> summary_buffers;
  763. for (size_t i = 0; i < num_outputs_; ++i) {
  764. summary_buffers.emplace_back(output_summary_[i], sizeof(aicpu::FWKAdapter::ResultSummary), false);
  765. }
  766. GE_CHK_STATUS_RET_NOLOG(UpdateIoAddr(input_buffers, summary_buffers));
  767. } else {
  768. GE_CHK_STATUS_RET_NOLOG(UpdateIoAddr(input_buffers, output_buffers));
  769. }
  770. GE_CHK_STATUS_RET_NOLOG(LaunchKernel(stream));
  771. if (unknown_type_ == DEPEND_SHAPE_RANGE) {
  772. GE_CHK_RT_RET(rtStreamSynchronize(stream));
  773. GE_CHK_STATUS_RET_NOLOG(UpdateOutputShape(output_desc));
  774. } else if (unknown_type_ == DEPEND_COMPUTE) {
  775. GE_CHK_RT_RET(rtStreamSynchronize(stream));
  776. GE_CHK_STATUS_RET_NOLOG(UpdateShapeAndDataByResultSummary(output_desc, output_buffers, stream));
  777. }
  778. return SUCCESS;
  779. }
  780. Status AiCpuBaseTask::UpdateArgTable(const SingleOpModelParam &param) {
  781. // aicpu do not have workspace, for now
  782. return DoUpdateArgTable(param, false);
  783. }
  784. const std::string &AiCpuBaseTask::GetTaskType() const { return kTaskTypeAicpu; }
  785. void AiCpuTask::GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) {
  786. arg_base = reinterpret_cast<uintptr_t *>(io_addr_host_.data());
  787. arg_count = io_addr_host_.size();
  788. }
  789. void AiCpuCCTask::SetKernelArgs(std::unique_ptr<uint8_t[]> args, size_t arg_size) {
  790. args_ = std::move(args);
  791. arg_size_ = arg_size;
  792. // The blockdim value is defult "1" for rtCpuKernelLaunch
  793. block_dim_ = 1;
  794. }
  795. void AiCpuCCTask::SetSoName(const std::string &so_name) { so_name_ = so_name; }
  796. void AiCpuCCTask::SetkernelName(const std::string &kernel_Name) { kernel_name_ = kernel_Name; }
  797. void AiCpuCCTask::SetIoAddr(uintptr_t *io_addr) { io_addr_ = io_addr; }
  798. const void *AiCpuCCTask::GetArgs() const { return args_.get(); }
  799. size_t AiCpuCCTask::GetArgSize() const { return arg_size_; }
  800. AiCpuCCTask::~AiCpuCCTask() {
  801. }
  802. Status AiCpuCCTask::LaunchKernel(rtStream_t stream) {
  803. GELOGI("To invoke rtCpuKernelLaunch. block_dim = %u, so_name is %s, kernel_name is %s", block_dim_, so_name_.data(),
  804. kernel_name_.data());
  805. // sm_desc is nullptr, because l2 buffer does not support
  806. auto *sm_desc = reinterpret_cast<rtSmDesc_t *>(sm_desc_);
  807. auto ret = rtCpuKernelLaunchWithFlag(static_cast<const void *>(so_name_.data()),
  808. static_cast<const void *>(kernel_name_.data()),
  809. block_dim_, args_.get(), static_cast<uint32_t>(arg_size_),
  810. sm_desc, stream, dump_flag_);
  811. if (ret != RT_ERROR_NONE) {
  812. GELOGE(ret, "[Invoke][rtCpuKernelLaunchWithFlag] failed. ret = %d.", ret);
  813. REPORT_CALL_ERROR("E19999", "invoke rtCpuKernelLaunchWithFlag failed, ret:%d.", ret);
  814. return RT_ERROR_TO_GE_STATUS(ret);
  815. }
  816. GELOGI("[TASK_INFO] %lu/%s", kernel_id_, op_type_.c_str());
  817. GELOGD("Invoke rtCpuKernelLaunch succeeded");
  818. return SUCCESS;
  819. }
  820. Status AiCpuCCTask::LaunchKernel(const std::vector<GeTensorDesc> &input_desc,
  821. const std::vector<DataBuffer> &input_buffers,
  822. std::vector<GeTensorDesc> &output_desc,
  823. std::vector<DataBuffer> &output_buffers,
  824. rtStream_t stream) {
  825. GE_CHK_STATUS_RET_NOLOG(UpdateExtInfo(input_desc, output_desc, stream));
  826. GE_CHK_STATUS_RET_NOLOG(UpdateIoAddr(input_buffers, output_buffers));
  827. GE_CHK_STATUS_RET_NOLOG(LaunchKernel(stream));
  828. if (unknown_type_ == DEPEND_SHAPE_RANGE) {
  829. GE_CHK_RT_RET(rtStreamSynchronize(stream));
  830. GE_CHK_STATUS_RET_NOLOG(UpdateOutputShape(output_desc));
  831. }
  832. return SUCCESS;
  833. }
  834. void AiCpuCCTask::GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) {
  835. arg_base = io_addr_;
  836. arg_count = io_addr_num_;
  837. }
  838. Status MemcpyAsyncTask::LaunchKernel(rtStream_t stream) {
  839. auto src_addr = reinterpret_cast<void *>(addresses_[0]);
  840. auto dst_addr = reinterpret_cast<void *>(addresses_[1]);
  841. kind_ = (kind_ == RT_MEMCPY_ADDR_DEVICE_TO_DEVICE) ? RT_MEMCPY_DEVICE_TO_DEVICE : kind_;
  842. GE_CHK_RT_RET(rtMemcpyAsync(dst_addr, dst_max_, src_addr, count_, kind_, stream));
  843. return SUCCESS;
  844. }
  845. void MemcpyAsyncTask::GetIoAddr(uintptr_t *&arg_base, size_t &arg_count) {
  846. arg_base = addresses_;
  847. arg_count = kMemcpyArgCount;
  848. }
  849. } // namespace ge

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示