You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ragged_math_ops.h 1.9 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_OP_RAGGED_MATH_OPS_H
  17. #define GE_OP_RAGGED_MATH_OPS_H
  18. #include "graph/operator.h"
  19. #include "graph/operator_reg.h"
  20. namespace ge {
  21. /**
  22. *@brief Returns a `RaggedTensor` containing the specified sequences of numbers.
  23. *@par Inputs:
  24. *@li starts: The starts of each range.
  25. *@li limits: The limits of each range.
  26. *@li deltas: The deltas of each range.
  27. *@par Outputs:
  28. *y:A Returns The `row_splits` for the returned `RaggedTensor`.The `flat_values` for the returned `RaggedTensor`.
  29. *@attention Constraints: \n
  30. *The input tensors `starts`, `limits`, and `deltas` may be scalars or vectors. \n
  31. *The vector inputs must all have the same size. Scalar inputs are broadcast \n
  32. *to match the size of the vector inputs.
  33. *@par Third-party framework compatibility
  34. * Compatible with tensorflow RaggedRange operator.
  35. */
  36. REG_OP(RaggedRange)
  37. .INPUT(starts, TensorType({DT_FLOAT,DT_DOUBLE,DT_INT32,DT_INT64}))
  38. .INPUT(limits, TensorType({DT_FLOAT,DT_DOUBLE,DT_INT32,DT_INT64}))
  39. .INPUT(deltas, TensorType({DT_FLOAT,DT_DOUBLE,DT_INT32,DT_INT64}))
  40. .OUTPUT(rt_nested_splits, TensorType({DT_INT32, DT_INT64}))
  41. .OUTPUT(rt_dense_values, TensorType({DT_FLOAT,DT_DOUBLE,DT_INT32,DT_INT64}))
  42. .REQUIRED_ATTR(Tsplits, Type)
  43. .OP_END_FACTORY_REG(RaggedRange)
  44. } // namespace ge
  45. #endif //GE_OP_RAGGED_MATH_OPS_H

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示