You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

functional_ops.h 3.6 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #ifndef GE_FUNCTIONAL_OPS_H_
  17. #define GE_FUNCTIONAL_OPS_H_
  18. #include "graph/operator_reg.h"
  19. #include "graph/operator.h"
  20. namespace ge {
  21. REG_OP(SymbolicGradient)
  22. .DYNAMIC_INPUT(input, TensorType::ALL())
  23. .DYNAMIC_OUTPUT(output, TensorType::ALL())
  24. .GRAPH(f)
  25. .OP_END_FACTORY_REG(SymbolicGradient)
  26. REG_OP(RemoteCall)
  27. .INPUT(target, DT_STRING)
  28. .DYNAMIC_INPUT(args, TensorType::ALL())
  29. .DYNAMIC_OUTPUT(output, TensorType::ALL())
  30. .GRAPH(f)
  31. .OP_END_FACTORY_REG(RemoteCall)
  32. REG_OP(_If)
  33. .INPUT(cond, TensorType::ALL())
  34. .DYNAMIC_INPUT(input, TensorType::ALL())
  35. .DYNAMIC_OUTPUT(output, TensorType::ALL())
  36. .GRAPH(then_branch)
  37. .GRAPH(else_branch)
  38. .OP_END_FACTORY_REG(_If)
  39. REG_OP(StatelessIf)
  40. .INPUT(cond, TensorType::ALL())
  41. .DYNAMIC_INPUT(input, TensorType::ALL())
  42. .DYNAMIC_OUTPUT(output, TensorType::ALL())
  43. .GRAPH(then_branch)
  44. .GRAPH(else_branch)
  45. .OP_END_FACTORY_REG(StatelessIf)
  46. REG_OP(If)
  47. .INPUT(cond, TensorType::ALL())
  48. .DYNAMIC_INPUT(input, TensorType::ALL())
  49. .DYNAMIC_OUTPUT(output, TensorType::ALL())
  50. .GRAPH(then_branch)
  51. .GRAPH(else_branch)
  52. .OP_END_FACTORY_REG(If)
  53. REG_OP(Case)
  54. .INPUT(branch_index, DT_INT32)
  55. .DYNAMIC_INPUT(input, TensorType::ALL())
  56. .DYNAMIC_OUTPUT(output, TensorType::ALL())
  57. .DYNAMIC_GRAPH(branches)
  58. .OP_END_FACTORY_REG(Case)
  59. REG_OP(_While)
  60. .DYNAMIC_INPUT(input, TensorType::ALL())
  61. .DYNAMIC_OUTPUT(output, TensorType::ALL())
  62. .GRAPH(cond)
  63. .GRAPH(body)
  64. .OP_END_FACTORY_REG(_While)
  65. REG_OP(While)
  66. .DYNAMIC_INPUT(input, TensorType::ALL())
  67. .DYNAMIC_OUTPUT(output, TensorType::ALL())
  68. .GRAPH(cond)
  69. .GRAPH(body)
  70. .ATTR(parallel_iterations, Int, 10)
  71. .OP_END_FACTORY_REG(While)
  72. REG_OP(StatelessWhile)
  73. .DYNAMIC_INPUT(input, TensorType::ALL())
  74. .DYNAMIC_OUTPUT(output, TensorType::ALL())
  75. .GRAPH(cond)
  76. .GRAPH(body)
  77. .ATTR(parallel_iterations, Int, 10)
  78. .OP_END_FACTORY_REG(StatelessWhile)
  79. REG_OP(For)
  80. .INPUT(start, DT_INT32)
  81. .INPUT(limit, DT_INT32)
  82. .INPUT(delta, DT_INT32)
  83. .DYNAMIC_INPUT(input, TensorType::ALL())
  84. .DYNAMIC_OUTPUT(output, TensorType::ALL())
  85. .GRAPH(body)
  86. .OP_END_FACTORY_REG(For)
  87. REG_OP(PartitionedCall)
  88. .DYNAMIC_INPUT(args, TensorType::ALL())
  89. .DYNAMIC_OUTPUT(output, TensorType::ALL())
  90. .GRAPH(f)
  91. .ATTR(config, String, "")
  92. .ATTR(config_proto, String, "")
  93. .ATTR(executor_type, String, "")
  94. .OP_END_FACTORY_REG(PartitionedCall)
  95. REG_OP(StatefulPartitionedCall)
  96. .DYNAMIC_INPUT(args, TensorType::ALL())
  97. .DYNAMIC_OUTPUT(output, TensorType::ALL())
  98. .GRAPH(f)
  99. .ATTR(config, String, "")
  100. .ATTR(config_proto, String, "")
  101. .ATTR(executor_type, String, "")
  102. .OP_END_FACTORY_REG(StatefulPartitionedCall)
  103. REG_OP(FakeParam)
  104. .OUTPUT(output, TensorType::ALL())
  105. .ATTR(shape, ListInt, {})
  106. .OP_END_FACTORY_REG(FakeParam)
  107. } // namespace ge
  108. #endif // GE_FUNCTIONAL_OPS_H_

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成,详细的架构图如下所示