|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882 |
- /**
- * Copyright 2019-2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #ifndef GE_OP_ARRAY_OPS_H_
- #define GE_OP_ARRAY_OPS_H_
-
- #include "graph/operator_reg.h"
- #include "graph/operator.h"
-
- namespace ge {
-
- /**
- *@brief Applies lower_bound(sorted_search_values, values) along each row.
-
- *@par Inputs:
- *The input sorted_x and values can be one-dimensional vector. Inputs include: \n
- * @li sorted_x:A `Tensor`. 2-D Tensor where each row is ordered.
- * @li values:A `Tensor`. Must have the same type as `sorted_x`.
-
- *@par Attributes:
- *@li out_type:An optional `DType` from: `int32, int64`. Defaults to `int32`.
-
- *@par Outputs:
- *y: A `Tensor` of type `out_type`.
-
- *@attention Constraints: \n
- *-The implementation for LowerBound on Ascend uses AI CPU, with bad performance. \n
-
- *@par Quantization supported or not
- *Not supported
- *@par Quantized inference supported or not
- *Supported
- *@par L2 convergence supported or not
- *@par Multiple batches supported or not
- */
-
- REG_OP(LowerBound)
- .INPUT(sorted_x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, \
- DT_INT16, DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE}))
- .INPUT(values, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, \
- DT_INT16, DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_INT32, DT_INT64}))
- .ATTR(out_type, Type, DT_INT32)
- .OP_END_FACTORY_REG(LowerBound)
-
- /**
- *@brief Reverses variable length slices.
-
- *@par Inputs:
- *The input x can be k-dimensional tensor, num_lower and num_upper can be zero-dimensional scalar. Inputs include: \n
- * @li x:A Tensor. The input to reverse.
- * @li seq_lengths:A Tensor. Must be one of the following types: int32, int64. 1-D.
-
- *@par Attributes:
- *@li seq_dim:An optional int. Defaults to 0. The dimension along which reversal is performed.
- *@li batch_dim:An optional int. Defaults to 0. The dimension along which reversal is performed.
-
- *@par Outputs:
- *y: Rank k tensor of the same shape as input. The extracted banded tensor.
-
- *@attention Constraints: \n
- *-The implementation for ReverseSequence on Ascend uses AI CPU, with bad performance.
-
- *@par Quantization supported or not
- *Not supported
- *@par Quantized inference supported or not
- *Supported
- *@par L2 convergence supported or not
- *@par Multiple batches supported or not
- */
-
- REG_OP(ReverseSequence)
- .INPUT(x,
- TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, \
- DT_UINT8, DT_INT32, DT_INT64, DT_BOOL, DT_DOUBLE}))
- .INPUT(seq_lengths, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(y,
- TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, \
- DT_UINT8, DT_INT32, DT_INT64, DT_BOOL, DT_DOUBLE}))
- .REQUIRED_ATTR(seq_dim, Int)
- .ATTR(batch_dim, Int, 0)
- .OP_END_FACTORY_REG(ReverseSequence)
-
- /**
- *@brief Copy a tensor setting everything outside a central band in each innermost matrix.
-
- *@par Inputs:
- *The input x can be k-dimensional tensor, num_lower and num_upper can be zero-dimensional scalar. Inputs include: \n
- * @li x:Rank `k` tensor.
- * @li num_lower:0-D tensor. Number of superdiagonals to keep. If negative, keep entire upper triangle.
- * @li num_upper:0-D tensor. Number of superdiagonals to keep. If negative, keep entire upper triangle.
-
- *@par Outputs:
- *y: Rank k tensor of the same shape as input. The extracted banded tensor.
-
- *@attention Constraints: \n
- *-The implementation for MatrixBandPart on Ascend uses AI CPU, with bad performance. \n
-
- *@par Quantization supported or not
- *Not supported
- *@par Quantized inference supported or not
- *Supported
- *@par L2 convergence supported or not
- *@par Multiple batches supported or not
- */
-
- REG_OP(MatrixBandPart)
- .INPUT(x, TensorType({ DT_INT8, DT_UINT8, \
- DT_INT16, DT_UINT16, DT_INT32, DT_INT64,
- DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_BOOL }))
- .INPUT(num_lower, TensorType({ DT_INT32, DT_INT64 }))
- .INPUT(num_upper, TensorType({ DT_INT32, DT_INT64 }))
- .OUTPUT(y, TensorType({ DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
- DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_BOOL }))
- .OP_END_FACTORY_REG(MatrixBandPart)
-
- /**
- *@brief Finds unique elements in a 1-D tensor.
-
- *@par Inputs:
- *The input x can be k-dimensional tensor, num_lower and num_upper can be zero-dimensional scalar. Inputs include: \n
- *x:1-D tensor.
-
- *@par Attributes:
- *out_idx:An optional DType from: int32, int64. Defaults to int32. \n
-
- *@par Outputs:
- *@li y:A Tensor. Has the same type as x.
- *@li idx:A Tensor of type out_idx.
- *@li count:A Tensor of type out_idx.
-
- *@attention Constraints: \n
- *-The implementation for UniqueWithCounts on Ascend uses AI CPU, with bad performance. \n
-
- *@par Quantization supported or not
- *Not supported
- *@par Quantized inference supported or not
- *Supported
- *@par L2 convergence supported or not
- *@par Multiple batches supported or not
- */
-
- REG_OP(UniqueWithCounts)
- .INPUT(x, TensorType({ DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
- DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE }))
- .OUTPUT(y, TensorType({ DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
- DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE }))
- .OUTPUT(idx, TensorType({ DT_INT32, DT_INT64 }))
- .OUTPUT(count, TensorType({ DT_INT32, DT_INT64 }))
- .REQUIRED_ATTR(out_idx, Type)
- .OP_END_FACTORY_REG(UniqueWithCounts)
-
- /**
- *@brief Finds unique elements in a 1-D tensor.
-
- *@par Inputs:
- *The input x can be k-dimensional tensor, num_lower and num_upper can be zero-dimensional scalar. Inputs include: \n
- *x:1-D tensor.
-
- *@par Attributes:
- *out_idx:An optional DType from: int32, int64. Defaults to int32.
-
- *@par Outputs:
- *@li y:x in the unique output y.
- *@li idx:A tensor idx the same size as x that contains the index of each value of x.
-
- *@attention Constraints: \n
- *-The implementation for Unique on Ascend uses AI CPU, with bad performance. \n
-
- *@par Quantization supported or not
- *Not supported
- *@par Quantized inference supported or not
- *Supported
- *@par L2 convergence supported or not
- *@par Multiple batches supported or not
- */
-
- REG_OP(Unique)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, \
- DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, \
- DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE}))
- .OUTPUT(idx, TensorType({DT_INT32, DT_INT64}))
- .ATTR(out_idx, Type, DT_INT32)
- .OP_END_FACTORY_REG(Unique)
-
- /**
- *@brief Finds unique elements in a 1-D tensor.
-
- *@par Inputs:
- *The input x can be k-dimensional tensor, num_lower and num_upper can be zero-dimensional scalar. Inputs include: \n
- * @li x:1-D tensor.
- * @li axis:A `Tensor` of type `int32` (default: None). The axis of the Tensor to.
-
- *@par Attributes:
- *out_idx:An optional DType from: int32, int64. Defaults to int32.
-
- *@par Outputs:
- *@li y:x in the unique output y.
- *@li idx:A tensor idx the same size as x that contains the index of each value of x.
-
- *@attention Constraints: \n
- *-The implementation for UniqueExt2 on Ascend uses AI CPU, with bad performance. \n
-
- *@par Quantization supported or not
- *Not supported
- *@par Quantized inference supported or not
- *Supported
- *@par L2 convergence supported or not
- *@par Multiple batches supported or not
- */
-
- REG_OP(UniqueExt2)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, \
- DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE}))
- .INPUT(axis, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, \
- DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE}))
- .OUTPUT(idx, TensorType({DT_INT32, DT_INT64}))
- .ATTR(out_idx, Type, DT_INT32)
- .OP_END_FACTORY_REG(UniqueExt2)
-
- /**
- *@brief Computes the inverse permutation of a tensor.
-
- *@par Inputs:
- *The input x can be k-dimensional tensor. Inputs include: \n
- *x:K-D tensor.
-
- *@par Outputs:
- *y:1-D tensor.
-
- *@attention Constraints:\n
- *-The implementation for InvertPermutation on Ascend uses AI CPU, with bad performance. \n
-
- *@par Quantization supported or not
- *Not supported
- *@par Quantized inference supported or not
- *Supported
- *@par L2 convergence supported or not
- *@par Multiple batches supported or not
- */
-
- REG_OP(InvertPermutation)
- .INPUT(x, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(y, TensorType({DT_INT32, DT_INT64}))
- .OP_END_FACTORY_REG(InvertPermutation)
-
- /**
- *@brief Checks a tensor for NaN and Inf values.
-
- *@par Inputs:
- *The input x can be k-dimensional tensor. Inputs include: \n
- *x:The input tensor.
-
- *@par Attributes:
- *message:Prefix of the error message.
-
- *@par Outputs:
- *y:The output tensor.
-
- *@attention Constraints: \n
- *-The implementation for CheckNumerics on Ascend uses AI CPU, with bad performance. \n
-
- *@par Quantization supported or not
- *Not supported
- *@par Quantized inference supported or not
- *Supported
- *@par L2 convergence supported or not
- *@par Multiple batches supported or not
- */
-
- REG_OP(CheckNumerics)
- .INPUT(x, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_FLOAT16, DT_FLOAT, DT_DOUBLE}))
- .REQUIRED_ATTR(message, String)
- .OP_END_FACTORY_REG(CheckNumerics)
-
- /**
- *@brief Converts an array of flat indices into a tuple of coordinate arrays.
-
- *@par Inputs:
- *The input indices can be 0-D or 1-D tensor, dims can be 1-D. Inputs include: \n
- * @li indices: A 0-D or 1-D int Tensor whose elements are indices into the flattened version of an array of dimensions dims.
- * @li dims:A Tensor. Must have the same type as indices. An 1-D int Tensor. The shape of the array to use for unraveling indices.
-
- *@par Outputs:
- *y:A Tensor. Has the same type as indices.
-
- *@attention Constraints: \n
- *-The implementation for UnravelIndex on Ascend uses AI CPU, with bad performance. \n
-
- *@par Quantization supported or not
- *Not supported
- *@par Quantized inference supported or not
- *Supported
- *@par L2 convergence supported or not
- *@par Multiple batches supported or not
- */
-
- REG_OP(UnravelIndex)
- .INPUT(indices, TensorType({DT_INT32, DT_INT64}))
- .INPUT(dims, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(y, TensorType({DT_INT32, DT_INT64}))
- .OP_END_FACTORY_REG(UnravelIndex)
-
- /**
- *@brief Applies upper_bound(sorted_search_values, values) along each row.
-
- *@par Inputs:
- *The input sorted_x can be 2-D tensor, values can be 2-D. Inputs include:
- * @li sorted_x: 2-D Tensor where each row is ordered.
- * @li values:2-D Tensor with the same numbers of rows as `sorted_x.
-
- *@par Attributes:
- *out_type:sets the optional out_type attribute to value.
-
- *@par Outputs:
- *y:A `Tensor` with the same shape as `values`.
-
- *@attention Constraints: \n
- *-The implementation for UpperBound on Ascend uses AI CPU, with bad performance. \n
-
- *@par Quantization supported or not
- *Not supported
- *@par Quantized inference supported or not
- *Supported
- *@par L2 convergence supported or not
- *@par Multiple batches supported or not
- */
-
- REG_OP(UpperBound)
- .INPUT(sorted_x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, \
- DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE}))
- .INPUT(values, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, \
- DT_UINT16, DT_UINT8, DT_INT32, DT_INT64, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_INT32, DT_INT64}))
- .REQUIRED_ATTR(out_type, Type)
- .OP_END_FACTORY_REG(UpperBound)
-
- /**
- *@brief Finds unique elements in a 1-D tensor.
-
- *@par Inputs:
- *The input x can be 1-D vector, axis can be 1-D vector. Inputs include: \n
- * @li x:1-D tensor.
- * @li axis:1-D tensor.
-
- *@par Attributes:
- *out_idx:An optional DType from: int32, int64. Defaults to int32.
-
- *@par Outputs:
- *@li y:x in the unique output y.
- *@li idx:A tensor idx the same size as x that contains the index of each value of x.
- *@li count:A tensor idx the same size as x that contains the index of each value of x.
-
- *@attention Constraints: \n
- *-The implementation for UniqueWithCountsExt2 on Ascend uses AI CPU, with bad performance. \n
-
- *@par Quantization supported or not
- *Not supported
- *@par Quantized inference supported or not
- *Supported
- *@par L2 convergence supported or not
- *@par Multiple batches supported or not
- */
-
- REG_OP(UniqueWithCountsExt2)
- .INPUT(x, TensorType({ DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
- DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE }))
- .INPUT(axis, TensorType({ DT_INT32, DT_INT64 }))
- .OUTPUT(y, TensorType({ DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
- DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE }))
- .OUTPUT(idx, TensorType({ DT_INT32, DT_INT64 }))
- .OUTPUT(count, TensorType({ DT_INT32, DT_INT64 }))
- .REQUIRED_ATTR(out_idx, Type)
- .OP_END_FACTORY_REG(UniqueWithCountsExt2)
-
- /**
- *@brief Fill the tensor with the mirror value.
-
- *@par Inputs:
- *The input x and paddings can be one-dimensional scalar. Inputs include: \n
- * @li x: input tensor to be padded.
- * @li paddings: A two-column matrix specifying the padding sizes. The number of rows must be the same as the rank of `input`.
-
- *@par Attributes:
- *mode:Either `REFLECT` or `SYMMETRIC`. In reflect mode the padded regions do not include the borders, while in symmetric mode the padded regions do include the borders.
-
- *@par Outputs:
- *y: The padded tensor.
-
- *@attention Constraints: \n
- -The implementation for MirrorPad on Ascend uses AI CPU, with bad performance. \n
-
- *@par Quantization supported or not
- *Not supported
- *@par Quantized inference supported or not
- *Supported
- *@par L2 convergence supported or not
- *@par Multiple batches supported or not
- */
-
- REG_OP(MirrorPad)
- .INPUT(x, TensorType({ DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
- DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_BOOL }))
- .INPUT(paddings, TensorType({ DT_INT32, DT_INT64 }))
- .OUTPUT(y, TensorType({ DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
- DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE, DT_BOOL }))
- .REQUIRED_ATTR(mode, String)
- .OP_END_FACTORY_REG(MirrorPad)
-
- /**
- *@brief Calculate the difference between two numbers or a list of strings.
-
- *@par Inputs:
- *The input x and y can be one-dimensional vector. Inputs include: \n
- * @li x:A Tensor. 1-D. Values to keep.
- * @li y:A Tensor. Must have the same type as x. 1-D. Values to remove.
-
- *@par Attributes:
- *out_idx:An optional DType from: int32, int64. Defaults to int32.
-
- *@par Outputs:
- *@li out:A Tensor. Has the same type as x.
- *@li idx:A Tensor of type out_idx.
-
- *@attention Constraints:\n
- -The implementation for ListDiff on Ascend uses AI CPU, with bad performance. \n
-
- *@par Quantization supported or not
- *Not supported
- *@par Quantized inference supported or not
- *Supported
- *@par L2 convergence supported or not
- *@par Multiple batches supported or not
- */
-
- REG_OP(ListDiff)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_DOUBLE, DT_UINT8, DT_INT8,
- DT_INT16, DT_UINT16, DT_INT32, DT_INT64}))
- .INPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_DOUBLE, DT_UINT8, DT_INT8,
- DT_INT16, DT_UINT16, DT_INT32, DT_INT64}))
- .OUTPUT(out, TensorType({DT_FLOAT, DT_FLOAT16, DT_DOUBLE, DT_UINT8, DT_INT8,
- DT_INT16, DT_UINT16, DT_INT32, DT_INT64}))
- .OUTPUT(idx, TensorType({DT_INT32, DT_INT64}))
- .ATTR(out_idx, Type, DT_INT32)
- .OP_END_FACTORY_REG(ListDiff)
-
- /**
- *@brief Creates a constant tensor from a tensor-like object. This operator is used for inference. \n
- Operator Const has the same definition as operator Constant.
-
- *@par Attributes:
- *@li value: Required. The value and type of the resulting tensor.
- *@li dtype: Optional. The type of the elements of the resulting tensor. \n
- The data type specified by this parameter must be the same as that of the "value" attribute.
-
- *@par Outputs:
- *y: A constant tensor.
- */
- REG_OP(Const)
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, \
- DT_UINT8, DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .ATTR(value, Tensor, Tensor()) // This is the value of the const op
- .ATTR(dtype, Int, 0)
- .OP_END_FACTORY_REG(Const)
-
- /**
- *@brief Creates a constant tensor for training.
-
- *@par Attributes:
- *@li value: Required. The value and type of the resulting tensor.
- *@li dtype: Optional. The type of the elements of the resulting tensor. \n
- The data type specified by this parameter must be the same as that of the "value" attribute.
-
- *@par Outputs:
- *y: The constant tensor.
- */
- REG_OP(Constant)
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, \
- DT_UINT8, DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .ATTR(value, Tensor, Tensor()) // This is the value of the constant op
- .ATTR(dtype, Int, 0)
- .OP_END_FACTORY_REG(Constant)
-
- /**
- *@brief Returns a copy of the input tensor.
-
- *@par Inputs:
- *x: A tensor.
-
- *@par Outputs:
- *y: A tensor.
- */
- REG_OP(Snapshot)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, \
- DT_UINT8, DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, \
- DT_UINT8, DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .OP_END_FACTORY_REG(Snapshot)
-
- /**
- *@brief Gives a guarantee to the runtime that the input tensor is a constant.
-
- *@par Inputs:
- *x: A tensor.
-
- *@par Outputs:
- *y: The input tensor.
- */
- REG_OP(GuaranteeConst)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8,
- DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8,
- DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .OP_END_FACTORY_REG(GuaranteeConst)
-
- /**
- *@brief Returns the target shape for broadcasting shapes "x1" and "x2".
-
- *@par Inputs:
- *@li x1: A tensor of type int32 or int64. A shape.
- *@li x2: A tensor of the same type as "x1". The other shape.
-
- *@par Outputs:
- *y: A tensor. The broadcasted shape.
- */
- REG_OP(BroadcastArgs)
- .INPUT(x1, TensorType({DT_INT32, DT_INT64}))
- .INPUT(x2, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(y, TensorType({DT_INT32, DT_INT64}))
- .OP_END_FACTORY_REG(BroadcastArgs)
-
- /**
- *@brief Outputs its input tensor as is and triggers an error if a gradient is requested.
-
- *@par Inputs:
- *x: A tensor.
-
- *@par Attributes:
- *message: Will be printed in the error at the attempt to request a gradient.
-
- *@par Outputs:
- *y: The input tensor.
- */
- REG_OP(PreventGradient)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8,
- DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8,
- DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .ATTR(message, String, "")
- .OP_END_FACTORY_REG(PreventGradient)
-
- /**
- *@brief Returns the reduction indices for computing gradients of "x1" and "x2" with broadcast.
-
- *@par Inputs:
- *@li x1: A tensor of type int32 or int64.
- *@li x2: A tensor of type int32 or int64. \n
- "x2" has the same type as "x1".
-
- *@par Outputs:
- *@li y1: A tensor. Reduction indices of "x1".
- *@li y2: A tensor. Reduction indices of "x2".
- */
- REG_OP(BroadcastGradientArgs)
- .INPUT(x1, TensorType({DT_INT32, DT_INT64}))
- .INPUT(x2, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(y1, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(y2, TensorType({DT_INT32, DT_INT64}))
- .OP_END_FACTORY_REG(BroadcastGradientArgs)
-
- /**
- *@brief Stops gradient computation. None is returned for the node where the gradient computation is stopped.
-
-
- *@par Inputs:
- *x: A tensor.
-
- *@par Outputs:
- *y: The input tensor.
- */
- REG_OP(StopGradient)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8,
- DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8,
- DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .OP_END_FACTORY_REG(StopGradient)
-
- /**
- *@brief Return a tensor with the same shape and contents as input.
-
- *@par Inputs:
- *x: A tensor.
-
- *@par Outputs:
- *y: A tensor.
- */
- REG_OP(Identity)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8,
- DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8,
- DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .OP_END_FACTORY_REG(Identity)
-
- /**
- *@brief Returns a list of tensors with the same shapes and contents as the input tensors.
-
- *@par Inputs:
- *x: A list of input tensors.
-
- *@par Outputs:
- *y: A list of Tensor objects, with the same length as the input tensor list.
- */
- REG_OP(IdentityN)
- .DYNAMIC_INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8,
- DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .DYNAMIC_OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8,
- DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .OP_END_FACTORY_REG(IdentityN)
-
- /**
- *@brief Inserts a dimension of 1 into a tensor's shape. Only the tensor shape is changed, without changing the data.
-
- *@par Inputs:
- *@li x: A tensor.
- *@li axis: The dimension index at which to expand.
-
- *@par Outputs:
- *y: A tensor.
- */
- REG_OP(ExpandDims)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, DT_INT32,
- DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .INPUT(axis, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, DT_INT32,
- DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .ATTR(T, Int, 0)
- .ATTR(Tdim, Int, 0)
- .OP_END_FACTORY_REG(ExpandDims)
-
- /**
- *@brief Reshapes a tensor. Only the tensor shape is changed, without changing the data.
-
- *@par Inputs:
- *@li x: A tensor.
- *@li shape: A tensor. Defines the shape of the output tensor.
-
- *@par Attributes:
- *@li axis: An optional int32 or int64. The first dimension to reshape. Defaults to "0".
- *@li num_axes: An optional int32 or int64. The extent of the reshape. Defaults to "-1".
-
- *@par Outputs:
- *y: A tensor.
- */
- REG_OP(Reshape)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, DT_INT32,
- DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .INPUT(shape, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8, DT_INT32,
- DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .ATTR(axis, Int, 0)
- .ATTR(num_axes, Int, -1)
- .OP_END_FACTORY_REG(Reshape)
-
- /**
- *@brief Removes dimensions of size 1 from the shape of a tensor.
-
- *@par Inputs:
- *x: A tensor.
-
- *@par Attributes:
- *axis: An optional list of int32 or int64. If not specified, squeezes all dimensions of size 1. \n If specified, only squeezes the dimensions listed. It is an error to squeeze a dimension that is not 1.
-
- *@par Outputs:
- *y: A tensor.
- */
- REG_OP(Squeeze)
- .INPUT(x, TensorType::ALL())
- .OUTPUT(y, TensorType::ALL())
- .ATTR(T, Int, 0)
- .ATTR(squeeze_dims, ListInt, {})
- .ATTR(axis, ListInt, {})
- .OP_END_FACTORY_REG(Squeeze)
-
- /**
- *@brief Returns an integer representing the rank of input tensor. The rank of a tensor is the number of indices required to uniquely select each element of the tensor, that is, the dimension size of the tensor.
-
- *@par Inputs:
- *x: A tensor.
-
- *@par Outputs:
- *y: A tensor. The rank of input tensor.
- */
- REG_OP(Rank)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8,
- DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_INT32}))
- .OP_END_FACTORY_REG(Rank)
-
- /**
- *@brief Returns the size of a tensor, that is, an integer of the number of elements of the tensor.
-
- *@par Inputs:
- *x: A tensor.
-
- *@par Attributes:
- *out_type: An optional int32 or int64. The output data type. Defaults to "int32".
-
- *@par Outputs:
- *y: A tensor. The size of the input tensor.
- */
- REG_OP(Size)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8,
- DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_INT32,DT_INT64}))
- .ATTR(alpha, Float, 1.0)
- .ATTR(beta, Float, 0.0)
- .ATTR(out_type, Int, DT_INT32)
- .OP_END_FACTORY_REG(Size)
-
- REG_OP(Data)
- .INPUT(data, TensorType::ALL())
- .OUTPUT(out, TensorType::ALL())
- .ATTR(index, Int, 0)
- .OP_END_FACTORY_REG(Data)
-
- /**
- *@brief Inserts a placeholder for a tensor that will be always fed.
-
- *@par Inputs:
- *x: A tensor.
-
- *@par Attributes:
- *@li peerIndex: An integer type. The index of the corresponding "end" node connected to.
- *@li parentId: A string, used to check if the nodes are from the saved parent node.
- *@li parentOpType: A string. Op type of the original node.
- *@li anchorIndex: An integer, used to check if the node is from the saved anchor.
-
- *@par Outputs:
- *y: The created placeholder tensor.
- */
- REG_OP(PlaceHolder)
- .INPUT(x, TensorType::ALL())
- .OUTPUT(y, TensorType::ALL())
- .ATTR(peerIndex, Int, 0) // the index of the corresponding 'end' node it's connected to
- .ATTR(parentId, String, "") // check if these node are from save parent node
- .ATTR(parentOpType, String, "") // op type of original node
- .ATTR(anchorIndex, Int, 0) // check if these node are from save anchor
- .OP_END_FACTORY_REG(PlaceHolder)
-
- REG_OP(End)
- .INPUT(x, TensorType::ALL())
- .OUTPUT(y, TensorType::ALL())
- .ATTR(peerIndex, Int, 0) // the index of the corresponding 'placeholder' node it's connected to
- .ATTR(parentOpType, String, "") // op type of original node
- .OP_END_FACTORY_REG(End)
-
- REG_OP(Summary)
- .INPUT(x, TensorType::ALL())
- .OP_END_FACTORY_REG(Summary)
-
- /**
- *@brief Returns the shape of a tensor.
-
- *@par Inputs:
- *x: A tensor.
-
- *@par Attributes:
- *out_type: An optional int32 or int64. The output data type. Defaults to int32.
-
- *@par Outputs:
- *y: A tensor. The shape of the input tensor.
- */
- REG_OP(Shape)
- .INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8,
- DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .OUTPUT(y, TensorType({DT_INT32, DT_INT64}))
- .ATTR(alpha, Float, 1.0)
- .ATTR(beta, Float, 0.0)
- .ATTR(out_type, Int, DT_INT32)
- .OP_END_FACTORY_REG(Shape)
-
- /**
- *@brief Returns shape of tensors.
-
- *@par Inputs:
- *x: A list of input tensors.
-
- *@par Attributes:
- *out_type: An optional int32 or int64. The output data type. Defaults to "int32".
-
- *@par Outputs:
- *y: A list of tensors with the same length as the input list of tensors.
- */
- REG_OP(ShapeN)
- .DYNAMIC_INPUT(x, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8,
- DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .DYNAMIC_OUTPUT(y, TensorType({DT_INT32, DT_INT64}))
- .ATTR(alpha, Float, 1.0)
- .ATTR(beta, Float, 0.0)
- .ATTR(out_type, Int, DT_INT32)
- .OP_END_FACTORY_REG(ShapeN)
-
- /**
- *@brief Creates a tensor with the given "shape" and "dtype".
-
- *@par Inputs:
- *shape: The shape of the output tensor.
-
- *@par Attributes:
- *@li dtype: Optional. The data type of the output tensor. Defaults to "int32".
- *@li init: An optional bool. If true, initializes the returned tensor with the default value of "dtype". Defaults to "false".
-
- *@par Outputs:
- *y: A tensor.
- */
- REG_OP(Empty)
- .INPUT(shape, TensorType({DT_INT32}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_FLOAT16, DT_INT8, DT_INT16, DT_UINT16, DT_UINT8,
- DT_INT32, DT_INT64, DT_UINT32, DT_UINT64, DT_BOOL, DT_DOUBLE}))
- .ATTR(dtype, Int, DT_INT32)
- .ATTR(init, Bool, 0)
- .OP_END_FACTORY_REG(Empty)
-
- /**
- *@brief Gradient op for MirrorPad op. This op folds a mirror-padded tensor.
-
- *@par Inputs:
- *The input x and y can be one-dimensional vector. Inputs include: \n
- * @li x:A Tensor. The input tensor to be folded.
- * @li paddings:A Tensor. Must be one of the following types: int32, int64. A two-column matrix specifying the padding sizes.
-
- *@par Attributes:
- *mode:A string from: "REFLECT", "SYMMETRIC". The mode used in the MirrorPad op.
-
- *@par Outputs:
- *y:A Tensor. Has the same type as x.
-
- *@attention Constraints: \n
- -The implementation for MirrorPadGrad on Ascend uses AI CPU, with bad performance. \n
-
- *@par Quantization supported or not
- *Not supported
- *@par Quantized inference supported or not
- *Supported
- *@par L2 convergence supported or not
- *@par Multiple batches supported or not
- */
-
- REG_OP(MirrorPadGrad)
- .INPUT(x, TensorType({ DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
- DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE }))
- .INPUT(paddings, TensorType({DT_INT32, DT_INT64}))
- .OUTPUT(y, TensorType({ DT_INT8, DT_UINT8, DT_INT16, DT_UINT16, \
- DT_INT32, DT_INT64, DT_FLOAT16, DT_FLOAT, DT_DOUBLE }))
- .REQUIRED_ATTR(mode, String)
- .OP_END_FACTORY_REG(MirrorPadGrad)
-
- REG_OP(Where)
- .INPUT(x, TensorType({DT_DOUBLE, DT_FLOAT, DT_FLOAT16, DT_INT8, DT_UINT8, DT_INT16, \
- DT_UINT16, DT_INT32, DT_UINT32, DT_INT64, DT_UINT64, DT_BOOL}))
- .OUTPUT(y, TensorType({DT_INT64}))
- .OP_END_FACTORY_REG(Where)
-
- } // namespace ge
-
- #endif // GE_OP_ARRAY_OPS_H_
|