|
- import torch
- from functools import reduce
- from torch.utils.data import Dataset, DataLoader, DistributedSampler
- from torch.utils.data.sampler import SequentialSampler, BatchSampler
-
-
- class TorchNormalDataset(Dataset):
- def __init__(self, num_of_data=1000):
- self.num_of_data = num_of_data
- self._data = list(range(num_of_data))
-
- def __len__(self):
- return self.num_of_data
-
- def __getitem__(self, item):
- return self._data[item]
-
-
- # 该类专门用于为 tests.helpers.models.torch_model.py/ TorchNormalModel_Classification_1 创建数据;
- class TorchNormalDataset_Classification(Dataset):
- def __init__(self, num_labels, feature_dimension=2, each_label_data=1000, seed=0):
- self.num_labels = num_labels
- self.feature_dimension = feature_dimension
- self.each_label_data = each_label_data
- self.seed = seed
-
- torch.manual_seed(seed)
- self.x_center = torch.randint(low=-100, high=100, size=[num_labels, feature_dimension])
- random_shuffle = torch.randn([num_labels, each_label_data, feature_dimension]) / 10
- self.x = self.x_center.unsqueeze(1).expand(num_labels, each_label_data, feature_dimension) + random_shuffle
- self.x = self.x.view(num_labels * each_label_data, feature_dimension)
- self.y = reduce(lambda x, y: x+y, [[i] * each_label_data for i in range(num_labels)])
-
- def __len__(self):
- return self.num_labels * self.each_label_data
-
- def __getitem__(self, item):
- return {"x": self.x[item], "y": self.y[item]}
-
-
- class TorchArgMaxDatset(Dataset):
- def __init__(self, feature_dimension=10, data_num=1000, seed=0):
- self.num_labels = feature_dimension
- self.feature_dimension = feature_dimension
- self.data_num = data_num
- self.seed = seed
-
- g = torch.Generator()
- g.manual_seed(1000)
- self.x = torch.randint(low=-100, high=100, size=[data_num, feature_dimension], generator=g).float()
- self.y = torch.max(self.x, dim=-1)[1]
-
- def __len__(self):
- return self.data_num
-
- def __getitem__(self, item):
- return {"x": self.x[item], "y": self.y[item]}
-
-
- if __name__ == "__main__":
- a = TorchNormalDataset_Classification(2, each_label_data=4)
-
- print(a.x)
- print(a.y)
- print(a[0])
-
-
|