|
- """
- 该模块用于实现一些帮助我们在测试的 callback 类;
- """
-
- from fastNLP.core.callbacks.callback import Callback
-
-
- class RecordLossCallback(Callback):
- """
- 通过该 callback 来测试模型的训练是否基本正常;
- """
- def __init__(self, loss_threshold: float):
- self.loss = None
- self.loss_threshold = loss_threshold
- self.loss_begin_value = None
-
- def on_before_backward(self, trainer, outputs):
- loss = trainer.extract_loss_from_outputs(outputs)
- loss = trainer.driver.tensor_to_numeric(loss)
- self.loss = loss
- if self.loss_begin_value is None:
- self.loss_begin_value = loss
-
- def on_train_end(self, trainer):
- assert self.loss < self.loss_begin_value
- if self.loss_threshold is not None:
- assert self.loss < self.loss_threshold
-
-
- class RecordMetricCallback(Callback):
- """
- 通过该 callback 来测试带有 metrics 的 Trainer 是否训练测试正确;
- """
- def __init__(self, monitor: str, metric_threshold: float, larger_better: bool):
- self.monitor = monitor
- self.larger_better = larger_better
- self.metric = None
- self.metric_threshold = metric_threshold
- self.metric_begin_value = float('-inf') if larger_better else float('inf')
-
- def on_evaluate_end(self, trainer, results):
- self.metric = results[self.monitor]
-
- def on_train_end(self, trainer):
- if self.larger_better:
- assert self.metric >= self.metric_begin_value
- assert self.metric > self.metric_threshold
- else:
- assert self.metric <= self.metric_begin_value
- assert self.metric < self.metric_threshold
-
-
- class RecordTrainerEventTriggerCallback(Callback):
- """
- 测试每一个 callback 是否在 trainer 中都得到了调用;
- """
- def on_after_trainer_initialized(self, trainer, driver):
- print("on_after_trainer_initialized")
-
- def on_sanity_check_begin(self, trainer):
- print("on_sanity_check_begin")
-
- def on_sanity_check_end(self, trainer, sanity_check_res):
- print("on_sanity_check_end")
-
- def on_train_begin(self, trainer):
- print("on_train_begin")
-
- def on_train_end(self, trainer):
- print("on_train_end")
-
- def on_train_epoch_begin(self, trainer):
- if trainer.cur_epoch_idx >= 1:
- # 触发 on_exception;
- raise Exception
- print("on_train_epoch_begin")
-
- def on_train_epoch_end(self, trainer):
- print("on_train_epoch_end")
-
- def on_fetch_data_begin(self, trainer):
- print("on_fetch_data_begin")
-
- def on_fetch_data_end(self, trainer):
- print("on_fetch_data_end")
-
- def on_train_batch_begin(self, trainer, batch, indices=None):
- print("on_train_batch_begin")
-
- def on_train_batch_end(self, trainer):
- print("on_train_batch_end")
-
- def on_exception(self, trainer, exception):
- print("on_exception")
-
- def on_before_backward(self, trainer, outputs):
- print("on_before_backward")
-
- def on_after_backward(self, trainer):
- print("on_after_backward")
-
- def on_before_optimizers_step(self, trainer, optimizers):
- print("on_before_optimizers_step")
-
- def on_after_optimizers_step(self, trainer, optimizers):
- print("on_after_optimizers_step")
-
- def on_before_zero_grad(self, trainer, optimizers):
- print("on_before_zero_grad")
-
- def on_after_zero_grad(self, trainer, optimizers):
- print("on_after_zero_grad")
-
- def on_evaluate_begin(self, trainer):
- print("on_evaluate_begin")
-
- def on_evaluate_end(self, trainer, results):
- print("on_evaluate_end")
-
-
-
-
-
-
-
|