|
- r"""
- 分布式 Trainer
- 使用步骤
- 1. 在代码中调用 DistTrainer,类似 Trainer,传入模型和数据等等参数
- 2. 在命令行中,将 python your_script.py 替换为 python -m torch.distributed.launch --nproc_per_node=N your_script.py
- """
- import logging
- import os
- import time
- from datetime import datetime
-
- import contextlib
- import torch
- import torch.cuda
- import torch.distributed as dist
- import torch.optim
- from torch.serialization import default_restore_location
- from pkg_resources import parse_version
- from torch.nn.parallel import DistributedDataParallel as DDP
- from torch.utils.data.distributed import DistributedSampler
- from tqdm import tqdm
- import time
-
- from ._logger import logger, init_logger_dist
- from .batch import DataSetIter, BatchIter
- from .callback import DistCallbackManager, CallbackException
- from .callback import _TesterCallback
- from .dataset import DataSet
- from .losses import _prepare_losser
- from .optimizer import Optimizer
- from .utils import _build_args
- from .utils import _build_fp16_env
- from .utils import _get_func_signature
- from .utils import _move_dict_value_to_device
-
- __all__ = [
- 'get_local_rank',
- 'DistTrainer',
- ]
-
- def get_local_rank():
- r"""
- 返回当前进程的 local rank, 0 到 N-1 ,N为当前分布式总进程数
- """
- if 'LOCAL_RANK' in os.environ:
- return int(os.environ['LOCAL_RANK'])
- from argparse import ArgumentParser
- parser = ArgumentParser()
- parser.add_argument('--local_rank', type=int)
- args, _ = parser.parse_known_args()
- if 'local_rank' in args and args.local_rank:
- os.environ['LOCAL_RANK'] = str(args.local_rank) # for multiple calls for this function
- return args.local_rank
- raise RuntimeError('Please use "python -m torch.distributed.launch --nproc_per_node=N train_script.py')
-
-
- class DistTrainer():
- r"""
- 分布式的 Trainer,支持分布式训练和混合精度的训练。具体实现原理请阅读 pytorch 官方文档。
-
- Note: 使用分布式 Trainer 时会同时有多个进程执行训练代码。因此将单进程的训练代码改为多进程之前,
- 请仔细检查,确保训练代码中的同步和互斥操作能正确执行(如模型保持,打印日志等)
- """
- def __init__(self, train_data, model, optimizer=None, loss=None,
- callbacks_all=None, callbacks_master=None,
- batch_size_per_gpu=8, n_epochs=1,
- num_workers=1, drop_last=False,
- dev_data=None, metrics=None, metric_key=None,
- update_every=1, print_every=10, validate_every=-1,
- save_path=None, device='auto',
- fp16=False, use_tqdm=True, **kwargs):
- r"""
-
- :param train_data: 训练集, :class:`~fastNLP.DataSet` 类型。
- :param nn.modules model: 待训练的模型
- :param optimizer: `torch.optim.Optimizer` 优化器。如果为None,则Trainer使用默认的Adam(model.parameters(), lr=4e-3)这个优化器
- :param loss: 使用的 :class:`~fastNLP.core.losses.LossBase` 对象。当为None时,默认使用 :class:`~fastNLP.LossInForward`
- :param list callbacks_all: 用于在train过程中起调节作用的回调函数,作用于所有训练进程中。
- 可使用的callback参见 :mod:`callback模块 <fastNLP.core.callback>`
- :param list callbacks_master: 用于在train过程中起调节作用的回调函数,只作用于其中一个进程( Master 进程)。
- 可使用的callback参见 :mod:`callback模块 <fastNLP.core.callback>`
- :param int batch_size_per_gpu: 训练时,每个进程的 batch 大小。
- :param int n_epochs: 需要优化迭代多少次。
- :param num_workers: int, 有多少个线程来进行数据pad处理。
- :param drop_last: 如果最后一个batch没有正好为batch_size这么多数据,就扔掉最后一个batch
- :param dev_data: 用于做验证的DataSet, :class:`~fastNLP.DataSet` 类型。
- :param metrics: 验证的评估函数。可以只使用一个 :class:`Metric<fastNLP.core.metrics.MetricBase>` ,
- 也可以使用多个 :class:`Metric<fastNLP.core.metrics.MetricBase>` ,通过列表传入。
- 如验证时取得了更好的验证结果(如果有多个Metric,以列表中第一个Metric为准),且save_path不为None,
- 则保存当前模型。Metric种类详见 :mod:`metrics模块 <fastNLP.core.metrics>` 。仅在传入dev_data时有效。
- :param str,None metric_key: :class:`Metric<fastNLP.core.metrics.MetricBase>` 有时会有多个指标,
- 比如 :class:`~fastNLP.core.metrics.SpanFPreRecMetric` 中包含了'f', 'pre', 'rec'。此时需
- 要指定以哪个指标为准。另外有些指标是越小效果越好,比如语言模型的困惑度,这种情况下,在key前面增加一个'-'来表
- 明验证时,值越小越好(比如: "-ppl")。仅在传入dev_data时有效。
- :param update_every: int, 多少步更新一次梯度。用于希望累计梯度的场景,比如需要128的batch_size, 但是直接设为128
- 会导致内存不足,通过设置batch_size=32, update_every=4达到目的。当optimizer为None时,该参数无效。
- :param int print_every: 多少次反向传播更新tqdm显示的loss; 如果use_tqdm=False, 则多少次反向传播打印loss。
- :param int validate_every: 多少个step在验证集上验证一次; 如果为-1,则每个epoch结束验证一次。仅在传入dev_data时有效。
- :param str,None save_path: 将模型保存路径,如果路径不存在,将自动创建文件夹。如果为None,则不保存模型。如果dev_data为None,则保存
- 最后一次迭代的模型。保存的时候不仅保存了参数,还保存了模型结构。即便使用DataParallel,这里也只保存模型。
- :param str device: 指定 device,可以是 gpu,cpu 或 auto
- :param bool fp16: 指定是否使用半精度训练。
- :param bool use_tqdm: 是否使用tqdm来显示训练进度; 如果为False,则将loss打印在终端中。
- :param kwargs: 支持配置可选参数
- bool test_use_tqdm: 在dev上验证的时候是否开启tqdm
- Sampler test_sampler: 在evaluate的时候使用的sampler
- int dev_batch_size: 在evaluate时,使用的evaluate的batch大小
- bool test_use_fp16: test时使用fp16
- bool set_grad_to_none: zero_grad时将grad设为None而不是0
- GradScaler gradscaler: 自定义的梯度 scaler
- """
- assert device in ['auto', 'cuda', 'cpu'], "Please set correct device in [auto', 'cuda', 'cpu']"
- if device == 'auto':
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
-
- # init distributed
- if device == 'cuda':
- torch.cuda.set_device(get_local_rank())
- self.device = torch.device("cuda", get_local_rank())
- else:
- self.device = torch.device(device)
-
- init_logger_dist()
-
- self.world_size = dist.get_world_size()
- self.rank = dist.get_rank() # unique id for each process
-
- self.train_data = train_data
- self.batch_size_per_gpu = int(batch_size_per_gpu)
- self.n_epochs = int(n_epochs)
- self.num_data_workers = int(num_workers)
- self.drop_last = drop_last
- self.update_every = int(update_every)
- self.print_every = int(print_every)
- self.validate_every = int(validate_every)
- self.save_path = save_path
- self.losser = _prepare_losser(loss)
- self.fp16 = fp16
- self.local_rank = get_local_rank()
- self._forward_func = model.forward
- self.callback_manager = DistCallbackManager(
- env={"trainer": self}, callbacks_all=callbacks_all,
- callbacks_master=callbacks_master)
- self.test_manager = DistCallbackManager(env={'trainer': self})
- self.metric_key = metric_key
- self.use_tqdm = use_tqdm
-
- model.to(self.device)
-
- # init fp16, must before DataParallel init
- autocast, GradScaler = _build_fp16_env(dummy=not self.fp16)
- self.auto_cast = autocast
- user_grad_scaler = getattr(kwargs, 'gradscaler', None)
- if user_grad_scaler is not None:
- assert self.fp16, "must set fp16=True to enable gradscaler"
- grad_scaler = user_grad_scaler
- else:
- grad_scaler = GradScaler()
- self.grad_scaler = grad_scaler
-
- self.set_grad_to_none = getattr(kwargs, 'set_grad_to_none', True)
-
- # init DataParallel
- if parse_version(torch.__version__)>=parse_version('1.1'):
- self.ddp_model = DDP(model, device_ids=[self.local_rank],
- output_device=self.local_rank, find_unused_parameters=True)
- else:
- self.ddp_model = DDP(model, device_ids=[self.local_rank],
- output_device=self.local_rank)
- self.model = self.ddp_model.module
-
- optimizer = self._get_optimizer(optimizer)
- self.optimizer = optimizer
- if isinstance(self.train_data, DataSet):
- self.sampler = DistributedSampler(self.train_data)
- self.data_iterator = self._get_data_iter(self.train_data)
- self.batch_size = self.world_size * self.batch_size_per_gpu
- self.n_steps = self._get_n_steps()
-
- self.test_use_tqdm = kwargs.get('test_use_tqdm', self.use_tqdm)
- dev_batch_size = kwargs.get('dev_batch_size', batch_size_per_gpu)
- # for evaluation, only run eval on master proc
- if dev_data and metrics:
- cb = _TesterCallback(
- dev_data, model, metrics,
- batch_size=dev_batch_size, num_workers=num_workers, sampler=kwargs.get('test_sampler', None),
- use_tqdm=self.test_use_tqdm)
- self.test_manager.add_callback([cb], master=True)
-
- # Setup logging
- # 同步start_time
- sync_time = torch.tensor(time.time(), dtype=torch.double).to(self.device)
- dist.broadcast(sync_time, src=0)
- self.start_time = datetime.fromtimestamp(sync_time.item()).strftime('%Y-%m-%d-%H-%M-%S-%f')
- # print('sync_time: {}, start_time: {}'.format(sync_time, self.start_time))
-
- if self.save_path:
- self.cp_save_path = self.save_path
- else:
- self.cp_save_path = None
- # use INFO in the master, WARN for others
- self.logger = logger
- self.logger.info("Setup Distributed Trainer")
- self.logger.warning("Process pid: {}, rank: {}, local rank: {}, device: {}, fp16: {}".format(
- os.getpid(), self.rank, self.local_rank, self.device, self.fp16))
- self.logger.info("Num of processes: {}".format(self.world_size))
- self.logger.info("Use device: {}".format(device))
-
- def _maybe_no_sync(self):
- """
- Whenever *samples* contains more than one mini-batch, we
- want to accumulate gradients locally and only call
- all-reduce in the last backwards pass.
- """
- i = self.step % self.update_every
- if (
- self.world_size > 1
- and hasattr(self.ddp_model, "no_sync")
- and i != 0
- ):
- return self.ddp_model.no_sync()
- else:
- return contextlib.ExitStack() # dummy contextmanager
-
- def _get_n_steps(self):
- return len(self.data_iterator) * self.n_epochs
-
- def _get_data_iter(self, dataset):
- if isinstance(dataset, DataSet):
- return DataSetIter(dataset=dataset, batch_size=self.batch_size_per_gpu, sampler=self.sampler,
- num_workers=self.num_data_workers, drop_last=self.drop_last)
- elif isinstance(dataset, BatchIter):
- return dataset
- else:
- raise TypeError("train_data type {} not support".format(type(dataset)))
-
- def _get_optimizer(self, optimizer):
- if isinstance(optimizer, torch.optim.Optimizer):
- return optimizer
- elif isinstance(optimizer, Optimizer):
- return optimizer.construct_from_pytorch(self.ddp_model.parameters())
- elif optimizer is None:
- return torch.optim.Adam(self.ddp_model.parameters(), lr=4e-3)
- else:
- if not (hasattr(optimizer, 'step') and callable(optimizer.step)):
- raise TypeError("optimizer must have a callable step() function.")
- else:
- self.optimizer = optimizer
- @property
- def is_master(self):
- r"""是否是主进程"""
- return self.rank == 0
-
- def train(self, load_best_model=True, on_exception='auto'):
- r"""
- 使用该函数使Trainer开始训练。
-
- :param str on_exception: 在训练过程遭遇exception,并被 :py:class:Callback 的on_exception()处理后,是否继续抛出异常。
- 支持'ignore','raise', 'auto': 'ignore'将捕获异常,写在Trainer.train()后面的代码将继续运行; 'raise'将异常抛出;
- 'auto'将ignore以下两种Exception: CallbackException与KeyboardInterrupt, raise其它exception.
- :return dict: 返回一个字典类型的数据,
- 内含以下内容::
-
- seconds: float, 表示训练时长
- 以下三个内容只有在提供了dev_data的情况下会有。
- best_eval: Dict of Dict, 表示evaluation的结果。第一层的key为Metric的名称,
- 第二层的key为具体的Metric
- best_epoch: int,在第几个epoch取得的最佳值
- best_step: int, 在第几个step(batch)更新取得的最佳值
-
- """
- try:
- self.logger.info("###### Training epochs started ######")
- self.logger.info('Total epochs: %d'% self.n_epochs)
- self.logger.info('Total steps: %d'% self.n_steps)
- self.logger.info('Num instances per GPU: %d'% self.batch_size_per_gpu)
- self.logger.info('Num of steps per update: %d' % self.update_every)
- self.logger.info('Total batch_size: %d'%
- (self.batch_size_per_gpu * dist.get_world_size() * self.update_every))
- self.logger.info('Total num of samples: %d'% len(self.train_data))
- self.logger.info("Num of callbacks for all workers: {}".format(
- len(self.callback_manager.callbacks_all)))
- self.logger.info("Num of callbacks for master workers: {}".format(
- len(self.callback_manager.callbacks_master)))
- self.logger.info("Callbacks for all workers: {}".format(
- [repr(cb) for cb in self.callback_manager.callbacks_all]))
- self.logger.info("Callbacks for master workers: {}".format(
- [repr(cb) for cb in self.callback_manager.callbacks_master]))
-
- start_time = time.time()
- results = {}
- if self.n_epochs <= 0:
- self.logger.info("Training epoch is {}, nothing was done.".format(self.n_epochs))
- results['seconds'] = 0.
- return results
-
- try:
- self.callback_manager.on_train_begin()
- self._train()
- self.callback_manager.on_train_end()
-
- except BaseException as e:
- self.callback_manager.on_exception(e)
- if on_exception == 'auto':
- if not isinstance(e, (CallbackException, KeyboardInterrupt)):
- raise e
- else:
- self.logger.info('Catch {}, ignored.'.format(e.__class__.__name__))
- elif on_exception == 'raise':
- raise e
-
- results['seconds'] = round(time.time() - start_time, 2)
- self.logger.info("###### Train finished ######")
- self.logger.info('Total train time: {} seconds.'. format(results['seconds']))
- if load_best_model and self.cp_save_path and len(self.test_manager.callbacks):
- self.load_check_point(self._best_save_name())
- finally:
- pass
- dist.barrier()
- return results
-
- def _train(self):
- dist.barrier()
- if not self.use_tqdm:
- from .utils import _pseudo_tqdm as inner_tqdm
- else:
- inner_tqdm = tqdm
-
- self.step = 0
- self.epoch = 0
- self.pbar = inner_tqdm(total=self.n_steps, postfix='loss:{0:<6.5f}',
- leave=False, dynamic_ncols=True, disable=not self.is_master)
- pbar = self.pbar
- avg_loss = 0
- data_iterator = self.data_iterator
- self.ddp_model.zero_grad()
- for epoch in range(1, self.n_epochs + 1):
- self.epoch = epoch
- pbar.set_description_str(desc="Epoch {}/{}".format(epoch, self.n_epochs))
- # early stopping
- self.callback_manager.on_epoch_begin()
- for batch_x, batch_y in data_iterator:
- self.step += 1
- self.ddp_model.train()
- _move_dict_value_to_device(batch_x, batch_y, device=self.device)
- indices = data_iterator.get_batch_indices()
- # negative sampling; replace unknown; re-weight batch_y
- self.callback_manager.on_batch_begin(batch_x, batch_y, indices)
- with self.auto_cast():
- prediction = self._data_forward(self.ddp_model, batch_x)
- # edit prediction
- self.callback_manager.on_loss_begin(batch_y, prediction)
- loss = self._compute_loss(prediction, batch_y)
-
- avg_loss += loss.detach()
-
- # Is loss NaN or inf? requires_grad = False
- self.callback_manager.on_backward_begin(loss)
- self.grad_scaler.scale(loss).backward()
- self.callback_manager.on_backward_end()
- if self.step % self.update_every == 0:
- self._update()
- self.callback_manager.on_step_end()
-
- if self.step % self.print_every == 0:
- avg_loss = float(avg_loss) / self.print_every
- print_output = "loss:{:<6.5f}".format(avg_loss)
- pbar.update(self.print_every)
- pbar.set_postfix_str(print_output)
- avg_loss = 0
-
- self.callback_manager.on_batch_end()
-
- if (self.validate_every > 0 and self.step % self.validate_every == 0) and len(self.test_manager.callbacks):
- self._do_validation()
-
- # ================= mini-batch end ==================== #
- if self.validate_every < 0 and len(self.test_manager.callbacks):
- self._do_validation()
-
- # lr decay; early stopping
- self.callback_manager.on_epoch_end()
- # =============== epochs end =================== #
- pbar.close()
- self.pbar = None
- # ============ tqdm end ============== #
-
- def _clear_grad_opt(self, optimizer):
- if self.set_grad_to_none:
- for group in optimizer.param_groups:
- for p in group['params']:
- if p.grad is not None:
- p.grad = None
- else:
- optimizer.zero_grad()
-
- def _update(self):
- r"""Perform weight update on a model.
-
- """
- self.grad_scaler.step(self.optimizer)
- self.grad_scaler.update()
- self._clear_grad_opt(self.optimizer)
-
- def _data_forward(self, network, x):
- x = _build_args(self._forward_func, **x)
- y = network(**x)
- if not isinstance(y, dict):
- raise TypeError(
- f"The return value of {_get_func_signature(self._forward_func)} should be dict, got {type(y)}.")
- return y
-
- def _compute_loss(self, predict, truth):
- r"""Compute loss given prediction and ground truth.
-
- :param predict: prediction dict, produced by model.forward
- :param truth: ground truth dict, produced by batch_y
- :return: a scalar
- """
- loss = self.losser(predict, truth)
- if self.update_every > 1:
- loss = loss / self.update_every
- if loss.dim() > 0:
- loss = loss.mean()
- return loss
-
- def save_check_point(self, name=None, only_params=False):
- r"""保存当前模型"""
- # only master save models
- if name is None:
- name = 'checkpoint-{}.bin'.format(self.step)
- os.makedirs(self.cp_save_path, exist_ok=True)
- path = os.path.join(self.cp_save_path, name)
- self.logger.info("Save checkpoint to {}".format(path))
- model_to_save = self.ddp_model.module
- if only_params:
- model_to_save = model_to_save.state_dict()
- if self.is_master:
- torch.save(model_to_save, path)
-
- def load_check_point(self, name):
- path = os.path.join(self.cp_save_path, name)
- self.logger.info('reload best model from %s', path)
- model_load = torch.load(
- path,
- map_location=lambda s, l: default_restore_location(s, "cpu"))
- if not isinstance(model_load, dict):
- model_load = model_load.state_dict()
- self.model.load_state_dict(model_load)
-
- def _best_save_name(self, auto_fix=True):
- best_name = "best_" + "_".join([self.model.__class__.__name__, str(self.metric_key), self.start_time])
- return best_name
-
- def _do_validation(self):
- with self.ddp_model.no_sync():
- # 因为模型参数不更新,可以关闭同步
- self.callback_manager.on_valid_begin()
- eval_res = self.test_manager.on_valid_begin()
- eval_res = list(filter(lambda x: x is not None, eval_res))
- if len(eval_res):
- eval_res, is_better = list(zip(*eval_res))
- eval_res = eval_res[0]
- is_better = is_better[0]
- else:
- eval_res, is_better = None, None
- if self.metric_key is None and eval_res is not None:
- eval_res0 = list(eval_res.values())[0]
- self.metric_key = list(eval_res0.keys())[0]
- # logger.info('{}, {}'.format(eval_res, is_better))
- # save better model on master node
- if is_better is not None and self.cp_save_path:
- if is_better:
- self.save_check_point(self._best_save_name(), only_params=False)
- dist.barrier()
-
- if not self.is_master and self.metric_key is None:
- # 主进程自动得到了metric_key,而其它进程没有
- prefix = 'best_' + self.model.__class__.__name__
- suffix = self.start_time
- fn_list = os.listdir(self.cp_save_path)
- fn_list = [fn for fn in fn_list if fn.startswith(prefix) and fn.endswith(suffix)]
- if len(fn_list) == 1:
- best_name = fn_list[0]
- self.metric_key = best_name[len(prefix):-len(suffix)].strip('_')
- # print('RANK {} metric_key {}'.format(self.rank, self.metric_key))
- self.callback_manager.on_valid_end(
- eval_res, self.metric_key, self.optimizer, is_better)
- self.ddp_model.train()
-
- def close(self):
- r"""关闭Trainer,销毁进程"""
- dist.destroy_process_group()
|