|
- import os
- import time
- from datetime import datetime
- from datetime import timedelta
-
- import torch
- from tensorboardX import SummaryWriter
- from torch import nn
-
- from fastNLP.core.batch import Batch
- from fastNLP.core.optimizer import Adam
- from fastNLP.core.sampler import RandomSampler
- from fastNLP.core.sampler import SequentialSampler
- from fastNLP.core.tester import Tester
- from fastNLP.core.dataset import DataSet
- from fastNLP.core.losses import _prepare_losser
- from fastNLP.core.metrics import _prepare_metrics
- from fastNLP.core.utils import CheckError
- from fastNLP.core.utils import _check_loss_evaluate
- from fastNLP.core.utils import _check_forward_error
- from fastNLP.core.utils import _build_args
- from fastNLP.core.utils import _move_dict_value_to_device
- from fastNLP.core.utils import get_func_signature
-
- class Trainer(object):
- """Main Training Loop
-
- """
-
- def __init__(self, train_data, model, losser=None, metrics=None, n_epochs=3, batch_size=32, print_every=-1,
- validate_every=-1,
- dev_data=None, use_cuda=False, save_path="./save",
- optimizer=Adam(lr=0.01, weight_decay=0), check_code_level=0,
- metric_key=None,
- **kwargs):
- super(Trainer, self).__init__()
-
- if not isinstance(train_data, DataSet):
- raise TypeError(f"The type of train_data must be fastNLP.DataSet, got {type(train_data)}.")
- if not isinstance(model, nn.Module):
- raise TypeError(f"The type of model must be torch.nn.Module, got {type(model)}.")
-
- # check metrics and dev_data
- if (not metrics) and dev_data is not None:
- raise ValueError("No metric for dev_data evaluation.")
- if metrics and (dev_data is None):
- raise ValueError("No dev_data for evaluations, pass dev_data or set metrics to None. ")
-
- # check save_path
- if not (save_path is None or isinstance(save_path, str)):
- raise ValueError("save_path can only be None or `str`.")
- # prepare evaluate
- metrics = _prepare_metrics(metrics)
-
- # parse metric_key
- # increase_better is True. It means the exp result gets better if the indicator increases.
- # It is true by default.
- self.increase_better = False if metric_key[0] == "-" else True
- self.metric_key = metric_key[1:] if metric_key[0] == "+" or metric_key[0] == "-" else metric_key
-
- # prepare loss
- losser = _prepare_losser(losser)
-
- if check_code_level>-1:
- _check_code(dataset=train_data, model=model, losser=losser, metrics=metrics, dev_data=dev_data,
- check_level=check_code_level)
-
- self.train_data = train_data
- self.dev_data = dev_data # If None, No validation.
- self.model = model
- self.losser = losser
- self.metrics = metrics
- self.n_epochs = int(n_epochs)
- self.batch_size = int(batch_size)
- self.use_cuda = bool(use_cuda)
- self.save_path = save_path
- self.print_every = int(print_every)
- self.validate_every = int(validate_every)
- self.best_metric_indicator = None
-
- self._model_device = model.parameters().__next__().device
-
- if isinstance(optimizer, torch.optim.Optimizer):
- self.optimizer = optimizer
- else:
- self.optimizer = optimizer.construct_from_pytorch(self.model.parameters())
-
- if self.dev_data is not None:
- self.tester = Tester(model=self.model,
- data=self.dev_data,
- metrics=self.metrics,
- batch_size=self.batch_size,
- use_cuda=self.use_cuda)
-
- for k, v in kwargs.items():
- setattr(self, k, v)
-
- self.step = 0
- self.start_time = None # start timestamp
-
- # print(self.__dict__)
-
- def train(self):
- """Start Training.
-
- :return:
- """
- try:
- if torch.cuda.is_available() and self.use_cuda:
- self.model = self.model.cuda()
-
- self._mode(self.model, is_test=False)
-
- start = time.time()
- self.start_time = str(datetime.now().strftime('%Y-%m-%d-%H-%M-%S'))
- print("training epochs started " + self.start_time)
- if self.save_path is None:
- class psudoSW:
- def __getattr__(self, item):
- def pass_func(*args, **kwargs):
- pass
-
- return pass_func
-
- self._summary_writer = psudoSW()
- else:
- path = os.path.join(self.save_path, 'tensorboard_logs_{}'.format(self.start_time))
- self._summary_writer = SummaryWriter(path)
-
- epoch = 1
- while epoch <= self.n_epochs:
-
- data_iterator = Batch(self.train_data, batch_size=self.batch_size, sampler=RandomSampler(),
- as_numpy=False)
-
- self._train_epoch(data_iterator, self.model, epoch, start)
-
- # validate_every override validation at end of epochs
- if self.dev_data and self.validate_every <= 0:
- self._do_validation()
- epoch += 1
- finally:
- self._summary_writer.close()
- del self._summary_writer
-
- def _train_epoch(self, data_iterator, model, epoch, start):
- """Training process in one epoch.
-
- kwargs should contain:
- - n_print: int, print training information every n steps.
- - start: time.time(), the starting time of this step.
- - epoch: int,
- """
- for batch_x, batch_y in data_iterator:
- # TODO 这里可能会遇到问题,万一用户在model内部修改了prediction的device就会有问题
- _move_dict_value_to_device(batch_x, batch_y, device=self._model_device)
- prediction = self._data_forward(model, batch_x)
- loss = self._compute_loss(prediction, batch_y)
- self._grad_backward(loss)
- self._update()
- self._summary_writer.add_scalar("loss", loss.item(), global_step=self.step)
- for name, param in self.model.named_parameters():
- if param.requires_grad:
- self._summary_writer.add_scalar(name + "_mean", param.mean(), global_step=self.step)
- # self._summary_writer.add_scalar(name + "_std", param.std(), global_step=self.step)
- # self._summary_writer.add_scalar(name + "_grad_sum", param.sum(), global_step=self.step)
- if self.print_every > 0 and self.step % self.print_every == 0:
- end = time.time()
- diff = timedelta(seconds=round(end - start))
- print_output = "[epoch: {:>3} step: {:>4}] train loss: {:>4.6} time: {}".format(
- epoch, self.step, loss.data, diff)
- print(print_output)
-
- if self.validate_every > 0 and self.step % self.validate_every == 0:
- self._do_validation()
-
- self.step += 1
-
- def _do_validation(self):
- res = self.tester.test()
- for name, num in res.items():
- self._summary_writer.add_scalar("valid_{}".format(name), num, global_step=self.step)
- if self.save_path is not None and self._better_eval_result(res):
- self._save_model(self.model,
- "best_" + "_".join([self.model.__class__.__name__, self.metric_key, self.start_time]))
-
- def _mode(self, model, is_test=False):
- """Train mode or Test mode. This is for PyTorch currently.
-
- :param model: a PyTorch model
- :param is_test: bool, whether in test mode or not.
-
- """
- if is_test:
- model.eval()
- else:
- model.train()
-
- def _update(self):
- """Perform weight update on a model.
-
- """
- self.optimizer.step()
-
- def _data_forward(self, network, x):
- x = _build_args(network.forward, **x)
- y = network(**x)
- if not isinstance(y, dict):
- raise TypeError(f"The return value of {get_func_signature(network.forward)} should be dict, got {type(y)}.")
- return y
-
- def _grad_backward(self, loss):
- """Compute gradient with link rules.
-
- :param loss: a scalar where back-prop starts
-
- For PyTorch, just do "loss.backward()"
- """
- self.model.zero_grad()
- loss.backward()
-
- def _compute_loss(self, predict, truth):
- """Compute loss given prediction and ground truth.
-
- :param predict: prediction dict, produced by model.forward
- :param truth: ground truth dict, produced by batch_y
- :return: a scalar
- """
- return self.losser(predict, truth)
-
- def _save_model(self, model, model_name, only_param=False):
- if self.save_path is not None:
- model_name = os.path.join(self.save_path, model_name)
- if only_param:
- torch.save(model.state_dict(), model_name)
- else:
- torch.save(model, model_name)
-
- def _better_eval_result(self, metrics):
- """Check if the current epoch yields better validation results.
-
- :return bool value: True means current results on dev set is the best.
- """
- if isinstance(metrics, tuple):
- loss, metrics = metrics
-
- if isinstance(metrics, dict):
- if len(metrics) == 1:
- # only single metric, just use it
- metric_dict = list(metrics.values())[0]
- metrics_name = list(metrics.keys())[0]
- else:
- metrics_name = self.metrics[0].__class__.__name__
- if metrics_name not in metrics:
- raise RuntimeError(f"{metrics_name} is chosen to do validation, but got {metrics}")
- metric_dict = metrics[metrics_name]
-
- if len(metric_dict) == 1:
- indicator_val, indicator = list(metric_dict.values())[0], list(metric_dict.keys())[0]
- elif len(metric_dict) > 1 and self.metric_key is None:
- raise RuntimeError(
- f"Got multiple metric keys: {metric_dict}, but metric_key is not set. Which one to use?")
- else:
- # metric_key is set
- if self.metric_key not in metric_dict:
- raise RuntimeError(f"matric key {self.metric_key} not found in {metric_dict}")
- indicator_val = metric_dict[self.metric_key]
-
- is_better = True
- if self.best_metric_indicator is None:
- # first-time validation
- self.best_metric_indicator = indicator_val
- else:
- if self.increase_better is True:
- if indicator_val > self.best_metric_indicator:
- self.best_metric_indicator = indicator_val
- else:
- is_better = False
- else:
- if indicator_val < self.best_metric_indicator:
- self.best_metric_indicator = indicator_val
- else:
- is_better = False
- return is_better
-
-
- DEFAULT_CHECK_BATCH_SIZE = 2
- DEFAULT_CHECK_NUM_BATCH = 2
-
- def _check_code(dataset, model, losser, metrics, batch_size=DEFAULT_CHECK_BATCH_SIZE,
- dev_data=None,
- check_level=0):
- # check get_loss 方法
- model_devcie = model.parameters().__next__().device
-
- batch = Batch(dataset=dataset, batch_size=batch_size, sampler=SequentialSampler())
- for batch_count, (batch_x, batch_y) in enumerate(batch):
- _move_dict_value_to_device(batch_x, batch_y, device=model_devcie)
- # forward check
- if batch_count==0:
- _check_forward_error(forward_func=model.forward, check_level=check_level,
- batch_x=batch_x)
-
- refined_batch_x = _build_args(model.forward, **batch_x)
- output = model(**refined_batch_x)
- func_signature = get_func_signature(model.forward)
- if not isinstance(output, dict):
- raise TypeError(f"The return value of {func_signature} should be `dict`, not `{type(output)}`.")
-
- # loss check
- try:
- loss = losser(output, batch_y)
- # check loss output
- if batch_count == 0:
- if not isinstance(loss, torch.Tensor):
- raise TypeError(
- f"The return value of {get_func_signature(losser.get_loss)} should be `torch.Tensor`, "
- f"but got `{type(loss)}`.")
- if len(loss.size()) != 0:
- raise ValueError(
- f"The size of return value of {get_func_signature(losser.get_loss)} is {loss.size()}, "
- f"should be torch.size([])")
- loss.backward()
- except CheckError as e:
- pre_func_signature = get_func_signature(model.forward)
- _check_loss_evaluate(prev_func_signature=pre_func_signature, func_signature=e.func_signature,
- check_res=e.check_res, output=output, batch_y=batch_y,
- check_level=check_level)
- model.zero_grad()
- if batch_count + 1 >= DEFAULT_CHECK_NUM_BATCH:
- break
-
- if dev_data is not None:
- tester = Tester(data=dataset[:batch_size * DEFAULT_CHECK_NUM_BATCH], model=model, metrics=metrics,
- batch_size=batch_size, verbose=-1)
- evaluate_results = tester.test()
- # TODO 这里需要检查是否返回来的值是否是合理的
-
|