|
- # 首先需要加入以下的路径到环境变量,因为当前只对内部测试开放,所以需要手动申明一下路径
-
- import torch.cuda
- from fastNLP.core.utils import cache_results
- from torch.optim import SGD
- from torch.optim.lr_scheduler import CosineAnnealingLR
- from fastNLP.core.trainer import Trainer
- from fastNLP import CrossEntropyLoss, AccuracyMetric
- from fastNLP.embeddings import StaticEmbedding
- from reproduction.text_classification.model.dpcnn import DPCNN
- from fastNLP.core.sampler import BucketSampler
- from fastNLP.core import LRScheduler
- from fastNLP.core.const import Const as C
- from fastNLP.core.vocabulary import VocabularyOption
- from utils.util_init import set_rng_seeds
- from fastNLP import logger
- import os
- from fastNLP.io import YelpFullPipe, YelpPolarityPipe
-
- os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
- # hyper
- logger.add_file('log', 'INFO')
-
- class Config():
- seed = 12345
- model_dir_or_name = "dpcnn-yelp-f"
- embedding_grad = True
- train_epoch = 30
- batch_size = 100
- task = "yelp_f"
- #datadir = 'workdir/datasets/SST'
- # datadir = 'workdir/datasets/yelp_polarity'
- datadir = 'workdir/datasets/yelp_full'
- #datafile = {"train": "train.txt", "dev": "dev.txt", "test": "test.txt"}
- datafile = {"train": "train.csv", "test": "test.csv"}
- lr = 1e-3
- src_vocab_op = VocabularyOption(max_size=100000)
- embed_dropout = 0.3
- cls_dropout = 0.1
- weight_decay = 1e-5
-
- def __init__(self):
- self.datadir = os.path.join(os.environ['HOME'], self.datadir)
- self.datapath = {k: os.path.join(self.datadir, v)
- for k, v in self.datafile.items()}
-
- ops = Config()
-
- set_rng_seeds(ops.seed)
- logger.info('RNG SEED %d'%ops.seed)
-
- # 1.task相关信息:利用dataloader载入dataInfo
-
-
- @cache_results(ops.model_dir_or_name+'-data-cache')
- def load_data():
- datainfo = YelpFullPipe(lower=True, tokenizer='raw').process_from_file(ops.datapath)
- for ds in datainfo.datasets.values():
- ds.apply_field(len, C.INPUT, C.INPUT_LEN)
- ds.set_input(C.INPUT, C.INPUT_LEN)
- ds.set_target(C.TARGET)
-
- return datainfo
-
-
- datainfo = load_data()
- embedding = StaticEmbedding(
- datainfo.vocabs['words'], model_dir_or_name='en-glove-6b-100d', requires_grad=ops.embedding_grad,
- normalize=False)
- embedding.embedding.weight.data /= embedding.embedding.weight.data.std()
- print(embedding.embedding.weight.data.mean(), embedding.embedding.weight.data.std())
-
- # 2.或直接复用fastNLP的模型
-
- # datainfo.datasets['train'] = datainfo.datasets['train'][:1000] # for debug purpose
- # datainfo.datasets['test'] = datainfo.datasets['test'][:1000]
- logger.info(datainfo)
-
- model = DPCNN(init_embed=embedding, num_cls=len(datainfo.vocabs[C.TARGET]),
- embed_dropout=ops.embed_dropout, cls_dropout=ops.cls_dropout)
- # print(model)
-
- # 3. 声明loss,metric,optimizer
- loss = CrossEntropyLoss(pred=C.OUTPUT, target=C.TARGET)
- metric = AccuracyMetric(pred=C.OUTPUT, target=C.TARGET)
- optimizer = SGD([param for param in model.parameters() if param.requires_grad == True],
- lr=ops.lr, momentum=0.9, weight_decay=ops.weight_decay)
-
- callbacks = []
-
- callbacks.append(LRScheduler(CosineAnnealingLR(optimizer, 5)))
-
-
- device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
-
- # print(device)
- logger.info(device)
-
- # 4.定义train方法
- # normal trainer
- trainer = Trainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss,
- sampler=BucketSampler(num_buckets=50, batch_size=ops.batch_size),
- metrics=[metric], use_tqdm=False, save_path='save',
- dev_data=datainfo.datasets['test'], device=device,
- check_code_level=-1, batch_size=ops.batch_size, callbacks=callbacks,
- n_epochs=ops.train_epoch, num_workers=4)
-
- # distributed trainer
- # trainer = DistTrainer(datainfo.datasets['train'], model, optimizer=optimizer, loss=loss,
- # metrics=[metric],
- # dev_data=datainfo.datasets['test'], device='cuda',
- # batch_size_per_gpu=ops.batch_size, callbacks_all=callbacks,
- # n_epochs=ops.train_epoch, num_workers=4)
-
-
- if __name__ == "__main__":
- print(trainer.train())
|