|
- import unittest
-
- import numpy as np
- import torch
-
- from fastNLP.core.callback import EarlyStopCallback, GradientClipCallback, LRScheduler, ControlC, \
- LRFinder, TensorboardCallback
- from fastNLP import DataSet
- from fastNLP import Instance
- from fastNLP import BCELoss
- from fastNLP import AccuracyMetric
- from fastNLP import SGD
- from fastNLP import Trainer
- from fastNLP.models.base_model import NaiveClassifier
- from fastNLP.core.callback import EarlyStopError
-
-
- def prepare_env():
- def prepare_fake_dataset():
- mean = np.array([-3, -3])
- cov = np.array([[1, 0], [0, 1]])
- class_A = np.random.multivariate_normal(mean, cov, size=(1000,))
-
- mean = np.array([3, 3])
- cov = np.array([[1, 0], [0, 1]])
- class_B = np.random.multivariate_normal(mean, cov, size=(1000,))
-
- data_set = DataSet([Instance(x=[float(item[0]), float(item[1])], y=[0.0]) for item in class_A] +
- [Instance(x=[float(item[0]), float(item[1])], y=[1.0]) for item in class_B])
- return data_set
-
- data_set = prepare_fake_dataset()
- data_set.set_input("x")
- data_set.set_target("y")
- model = NaiveClassifier(2, 1)
- return data_set, model
-
-
- class TestCallback(unittest.TestCase):
-
- def test_gradient_clip(self):
- data_set, model = prepare_env()
- trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"),
- batch_size=32, n_epochs=20, print_every=50, dev_data=data_set,
- metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=False,
- callbacks=[GradientClipCallback(model.parameters(), clip_value=2)], check_code_level=2)
- trainer.train()
-
- def test_early_stop(self):
- data_set, model = prepare_env()
- trainer = Trainer(data_set, model, optimizer=SGD(lr=0.01), loss=BCELoss(pred="predict", target="y"),
- batch_size=32, n_epochs=20, print_every=50, dev_data=data_set,
- metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=False,
- callbacks=[EarlyStopCallback(5)], check_code_level=2)
- trainer.train()
-
- def test_lr_scheduler(self):
- data_set, model = prepare_env()
- optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
- trainer = Trainer(data_set, model, optimizer=optimizer, loss=BCELoss(pred="predict", target="y"), batch_size=32,
- n_epochs=5, print_every=50, dev_data=data_set,
- metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=False,
- callbacks=[LRScheduler(torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1))],
- check_code_level=2)
- trainer.train()
-
- def test_KeyBoardInterrupt(self):
- data_set, model = prepare_env()
- trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"),
- batch_size=32, n_epochs=5, print_every=50, use_tqdm=False, callbacks=[ControlC(False)],
- check_code_level=2)
- trainer.train()
-
- def test_LRFinder(self):
- data_set, model = prepare_env()
- trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"),
- batch_size=32, n_epochs=5, print_every=50, use_tqdm=False,
- callbacks=[LRFinder(len(data_set) // 32)], check_code_level=2)
- trainer.train()
-
- def test_TensorboardCallback(self):
- data_set, model = prepare_env()
- trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"),
- batch_size=32, n_epochs=5, print_every=50, dev_data=data_set,
- metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=False,
- callbacks=[TensorboardCallback("loss", "metric")], check_code_level=2)
- trainer.train()
-
- def test_readonly_property(self):
- from fastNLP.core.callback import Callback
- passed_epochs = []
- total_epochs = 5
-
- class MyCallback(Callback):
- def __init__(self):
- super(MyCallback, self).__init__()
-
- def on_epoch_begin(self):
- passed_epochs.append(self.epoch)
- print(self.n_epochs, self.n_steps, self.batch_size)
- print(self.model)
- print(self.optimizer)
-
- data_set, model = prepare_env()
- trainer = Trainer(data_set, model, optimizer=SGD(lr=0.1), loss=BCELoss(pred="predict", target="y"),
- batch_size=32, n_epochs=total_epochs, print_every=50, dev_data=data_set,
- metrics=AccuracyMetric(pred="predict", target="y"), use_tqdm=False, callbacks=[MyCallback()],
- check_code_level=2)
- trainer.train()
- assert passed_epochs == list(range(1, total_epochs + 1))
|