|
- import unittest
-
- import torch
-
- from fastNLP.models import CNNText
- from fastNLP.modules.utils import get_dropout_mask, summary
-
-
- class TestUtil(unittest.TestCase):
- def test_get_dropout_mask(self):
- tensor = torch.randn(3, 4)
- mask = get_dropout_mask(0.3, tensor)
- self.assertSequenceEqual(mask.size(), torch.Size([3, 4]))
-
- def test_summary(self):
- model = CNNText(embed=(4, 4), num_classes=2, kernel_nums=(9,5), kernel_sizes=(1,3))
- # 4 * 4 + 4 * (9 * 1 + 5 * 3) + 2 * (9 + 5 + 1) = 142
- self.assertSequenceEqual((142, 142, 0), summary(model))
- model.embed.requires_grad = False
- self.assertSequenceEqual((142, 126, 16), summary(model))
|