|
- ==========
- Quickstart
- ==========
-
- Example
- -------
-
- Basic Usage
- ~~~~~~~~~~~
-
- A typical fastNLP routine is composed of four phases: loading dataset,
- pre-processing data, constructing model and training model.
-
- .. code:: python
-
- from fastNLP.models.base_model import BaseModel
- from fastNLP.modules import encoder
- from fastNLP.modules import aggregation
- from fastNLP.modules import decoder
-
- from fastNLP.loader.dataset_loader import ClassDataSetLoader
- from fastNLP.loader.preprocess import ClassPreprocess
- from fastNLP.core.trainer import ClassificationTrainer
- from fastNLP.core.inference import ClassificationInfer
-
-
- class ClassificationModel(BaseModel):
- """
- Simple text classification model based on CNN.
- """
-
- def __init__(self, num_classes, vocab_size):
- super(ClassificationModel, self).__init__()
-
- self.emb = encoder.Embedding(nums=vocab_size, dims=300)
- self.enc = encoder.Conv(
- in_channels=300, out_channels=100, kernel_size=3)
- self.agg = aggregation.MaxPool()
- self.dec = decoder.MLP([100, num_classes])
-
- def forward(self, x):
- x = self.emb(x) # [N,L] -> [N,L,C]
- x = self.enc(x) # [N,L,C_in] -> [N,L,C_out]
- x = self.agg(x) # [N,L,C] -> [N,C]
- x = self.dec(x) # [N,C] -> [N, N_class]
- return x
-
-
- data_dir = 'data' # directory to save data and model
- train_path = 'test/data_for_tests/text_classify.txt' # training set file
-
- # load dataset
- ds_loader = ClassDataSetLoader("train", train_path)
- data = ds_loader.load()
-
- # pre-process dataset
- pre = ClassPreprocess(data_dir)
- vocab_size, n_classes = pre.process(data, "data_train.pkl")
-
- # construct model
- model_args = {
- 'num_classes': n_classes,
- 'vocab_size': vocab_size
- }
- model = ClassificationModel(num_classes=n_classes, vocab_size=vocab_size)
-
- # train model
- train_args = {
- "epochs": 20,
- "batch_size": 50,
- "pickle_path": data_dir,
- "validate": False,
- "save_best_dev": False,
- "model_saved_path": None,
- "use_cuda": True,
- "learn_rate": 1e-3,
- "momentum": 0.9}
- trainer = ClassificationTrainer(train_args)
- trainer.train(model)
-
- # predict using model
- seqs = [x[0] for x in data]
- infer = ClassificationInfer(data_dir)
- labels_pred = infer.predict(model, seqs)
|