fastNLP 是一款轻量级的 NLP 处理套件。你既可以使用它快速地完成一个命名实体识别(NER)、中文分词或文本分类任务; 也可以使用他构建许多复杂的网络模型,进行科研。它具有如下的特性:
fastNLP 依赖如下包:
其中torch的安装可能与操作系统及 CUDA 的版本相关,请参见 PyTorch 官网 。
在依赖包安装完成的情况,您可以在命令行执行如下指令完成安装
pip install fastNLP
大部分用于的 NLP 任务神经网络都可以看做由编码(encoder)、聚合(aggregator)、解码(decoder)三种模块组成。
fastNLP 在 modules 模块中内置了三种模块的诸多组件,可以帮助用户快速搭建自己所需的网络。 三种模块的功能和常见组件如下:
类型 | 功能 | 例子 |
encoder | 将输入编码为具有具 有表示能力的向量 | embedding, RNN, CNN, transformer |
aggregator | 从多个向量中聚合信息 | self-attention, max-pooling |
decoder | 将具有某种表示意义的 向量解码为需要的输出 形式 | MLP, CRF |
fastNLP 为不同的 NLP 任务实现了许多完整的模型,它们都经过了训练和测试。
你可以在以下两个地方查看相关信息
fastNLP的大致工作流程如上图所示,而项目结构如下:
fastNLP | 开源的自然语言处理库 |
fastNLP.core | 实现了核心功能,包括数据处理组件、训练器、测速器等 |
fastNLP.models | 实现了一些完整的神经网络模型 |
fastNLP.modules | 实现了用于搭建神经网络模型的诸多组件 |
fastNLP.io | 实现了读写功能,包括数据读入,模型读写等 |
In memory of @FengZiYjun. May his soul rest in peace. We will miss you very very much!