|
- # coding=utf-8
- # Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
- # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """PyTorch OpenAI GPT-2 model."""
-
- from dataclasses import dataclass
- from typing import Optional, Tuple
-
- from .configuration_gpt2 import GPT2Config
- from fastNLP.transformers.torch.activations import ACT2FN
- from fastNLP.transformers.torch.file_utils import (
- ModelOutput,
- add_code_sample_docstrings,
- add_start_docstrings,
- add_start_docstrings_to_model_forward,
- replace_return_docstrings,
- )
- from fastNLP.transformers.torch.modeling_outputs import (
- BaseModelOutputWithPastAndCrossAttentions,
- CausalLMOutputWithCrossAttentions,
- SequenceClassifierOutputWithPast,
- TokenClassifierOutput,
- )
- from fastNLP.transformers.torch.modeling_utils import (
- Conv1D,
- PreTrainedModel,
- SequenceSummary,
- find_pruneable_heads_and_indices,
- prune_conv1d_layer,
- )
- from fastNLP.transformers.torch.utils.model_parallel_utils import assert_device_map, get_device_map
-
- from fastNLP.envs.imports import _NEED_IMPORT_TORCH
- from fastNLP.core.log import logger
-
- __all__ = [
- "GPT2_PRETRAINED_MODEL_ARCHIVE_LIST",
- "GPT2DoubleHeadsModel",
- "GPT2ForSequenceClassification",
- "GPT2ForTokenClassification",
- "GPT2LMHeadModel",
- "GPT2Model",
- "GPT2PreTrainedModel",
- ]
-
- if _NEED_IMPORT_TORCH:
- import torch
- import torch.utils.checkpoint
- from torch import nn
- from torch.nn import CrossEntropyLoss, MSELoss, Module
- else:
- from fastNLP.core.utils.dummy_class import DummyClass as Module
-
- _CHECKPOINT_FOR_DOC = "gpt2"
- _CONFIG_FOR_DOC = "GPT2Config"
- _TOKENIZER_FOR_DOC = "GPT2Tokenizer"
-
- GPT2_PRETRAINED_MODEL_ARCHIVE_LIST = [
- "gpt2",
- "gpt2-medium",
- "gpt2-large",
- "gpt2-xl",
- "distilgpt2",
- # See all GPT-2 models at https://huggingface.co/models?filter=gpt2
- ]
-
- class GPT2Attention(Module):
- def __init__(self, config, is_cross_attention=False):
- super().__init__()
-
- max_positions = config.max_position_embeddings
- self.register_buffer(
- "bias",
- torch.tril(torch.ones((max_positions, max_positions), dtype=torch.uint8)).view(
- 1, 1, max_positions, max_positions
- ),
- )
- self.register_buffer("masked_bias", torch.tensor(-1e4))
-
- self.embed_dim = config.hidden_size
- self.num_heads = config.num_attention_heads
- self.head_dim = self.embed_dim // self.num_heads
- self.split_size = self.embed_dim
- if self.head_dim * self.num_heads != self.embed_dim:
- raise ValueError(
- f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
- )
-
- self.scale_attn_weights = config.scale_attn_weights
- self.is_cross_attention = is_cross_attention
-
- if self.is_cross_attention:
- self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
- self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
- else:
- self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
- self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
-
- self.attn_dropout = nn.Dropout(config.attn_pdrop)
- self.resid_dropout = nn.Dropout(config.resid_pdrop)
-
- self.pruned_heads = set()
-
- def prune_heads(self, heads):
- if len(heads) == 0:
- return
- heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
- index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
-
- # Prune conv1d layers
- self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
- self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
-
- # Update hyper params
- self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
- self.num_heads = self.num_heads - len(heads)
- self.pruned_heads = self.pruned_heads.union(heads)
-
- def _attn(self, query, key, value, attention_mask=None, head_mask=None):
- attn_weights = torch.matmul(query, key.transpose(-1, -2))
-
- if self.scale_attn_weights:
- attn_weights = attn_weights / (float(value.size(-1)) ** 0.5)
-
- if not self.is_cross_attention:
- # if only "normal" attention layer implements causal mask
- query_length, key_length = query.size(-2), key.size(-2)
- causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length].bool()
- attn_weights = torch.where(causal_mask, attn_weights, self.masked_bias.to(attn_weights.dtype))
-
- if attention_mask is not None:
- # Apply the attention mask
- attn_weights = attn_weights + attention_mask
-
- attn_weights = nn.Softmax(dim=-1)(attn_weights)
- attn_weights = self.attn_dropout(attn_weights)
-
- # Mask heads if we want to
- if head_mask is not None:
- attn_weights = attn_weights * head_mask
-
- attn_output = torch.matmul(attn_weights, value)
-
- return attn_output, attn_weights
-
- def _split_heads(self, tensor, num_heads, attn_head_size):
- """
- Splits hidden_size dim into attn_head_size and num_heads
- """
- new_shape = tensor.size()[:-1] + (num_heads, attn_head_size)
- tensor = tensor.view(*new_shape)
- return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
-
- def _merge_heads(self, tensor, num_heads, attn_head_size):
- """
- Merges attn_head_size dim and num_attn_heads dim into hidden_size
- """
- tensor = tensor.permute(0, 2, 1, 3).contiguous()
- new_shape = tensor.size()[:-2] + (num_heads * attn_head_size,)
- return tensor.view(new_shape)
-
- def forward(
- self,
- hidden_states,
- layer_past=None,
- attention_mask=None,
- head_mask=None,
- encoder_hidden_states=None,
- encoder_attention_mask=None,
- use_cache=False,
- output_attentions=False,
- ):
- if encoder_hidden_states is not None:
- if not hasattr(self, "q_attn"):
- raise ValueError(
- "If class is used as cross attention, the weights `q_attn` have to be defined. "
- "Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
- )
-
- query = self.q_attn(hidden_states)
- key, value = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
- attention_mask = encoder_attention_mask
- else:
- query, key, value = self.c_attn(hidden_states).split(self.split_size, dim=2)
-
- query = self._split_heads(query, self.num_heads, self.head_dim)
- key = self._split_heads(key, self.num_heads, self.head_dim)
- value = self._split_heads(value, self.num_heads, self.head_dim)
-
- if layer_past is not None:
- past_key, past_value = layer_past
- key = torch.cat((past_key, key), dim=-2)
- value = torch.cat((past_value, value), dim=-2)
-
- if use_cache is True:
- present = (key, value)
- else:
- present = None
-
- attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
-
- attn_output = self._merge_heads(attn_output, self.num_heads, self.head_dim)
- attn_output = self.c_proj(attn_output)
- attn_output = self.resid_dropout(attn_output)
-
- outputs = (attn_output, present)
- if output_attentions:
- outputs += (attn_weights,)
-
- return outputs # a, present, (attentions)
-
-
- class GPT2MLP(Module):
- def __init__(self, intermediate_size, config):
- super().__init__()
- embed_dim = config.hidden_size
- self.c_fc = Conv1D(intermediate_size, embed_dim)
- self.c_proj = Conv1D(embed_dim, intermediate_size)
- self.act = ACT2FN[config.activation_function]
- self.dropout = nn.Dropout(config.resid_pdrop)
-
- def forward(self, hidden_states):
- hidden_states = self.c_fc(hidden_states)
- hidden_states = self.act(hidden_states)
- hidden_states = self.c_proj(hidden_states)
- hidden_states = self.dropout(hidden_states)
- return hidden_states
-
-
- class GPT2Block(Module):
- def __init__(self, config):
- super().__init__()
- hidden_size = config.hidden_size
- inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
-
- self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
- self.attn = GPT2Attention(config)
- self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
-
- if config.add_cross_attention:
- self.crossattention = GPT2Attention(config, is_cross_attention=True)
- self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
-
- self.mlp = GPT2MLP(inner_dim, config)
-
- def forward(
- self,
- hidden_states,
- layer_past=None,
- attention_mask=None,
- head_mask=None,
- encoder_hidden_states=None,
- encoder_attention_mask=None,
- use_cache=False,
- output_attentions=False,
- ):
- residual = hidden_states
- hidden_states = self.ln_1(hidden_states)
- attn_outputs = self.attn(
- hidden_states,
- layer_past=layer_past,
- attention_mask=attention_mask,
- head_mask=head_mask,
- use_cache=use_cache,
- output_attentions=output_attentions,
- )
- attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
- outputs = attn_outputs[1:]
- # residual connection
- hidden_states = attn_output + residual
-
- if encoder_hidden_states is not None:
- # add one self-attention block for cross-attention
- if not hasattr(self, "crossattention"):
- raise ValueError(
- f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
- "cross-attention layers by setting `config.add_cross_attention=True`"
- )
- residual = hidden_states
- hidden_states = self.ln_cross_attn(hidden_states)
- cross_attn_outputs = self.crossattention(
- hidden_states,
- attention_mask=attention_mask,
- head_mask=head_mask,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- output_attentions=output_attentions,
- )
- attn_output = cross_attn_outputs[0]
- # residual connection
- hidden_states = residual + attn_output
- outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
-
- residual = hidden_states
- hidden_states = self.ln_2(hidden_states)
- feed_forward_hidden_states = self.mlp(hidden_states)
- # residual connection
- hidden_states = residual + feed_forward_hidden_states
-
- if use_cache:
- outputs = (hidden_states,) + outputs
- else:
- outputs = (hidden_states,) + outputs[1:]
-
- return outputs # hidden_states, present, (attentions, cross_attentions)
-
-
- class GPT2PreTrainedModel(PreTrainedModel):
- """
- An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
- models.
- """
-
- config_class = GPT2Config
- base_model_prefix = "transformer"
- is_parallelizable = True
- supports_gradient_checkpointing = True
-
- def __init__(self, *inputs, **kwargs):
- super().__init__(*inputs, **kwargs)
-
- def _init_weights(self, module):
- """Initialize the weights."""
- if isinstance(module, (nn.Linear, Conv1D)):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.bias is not None:
- module.bias.data.zero_()
- elif isinstance(module, nn.Embedding):
- module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
- if module.padding_idx is not None:
- module.weight.data[module.padding_idx].zero_()
- elif isinstance(module, nn.LayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
-
- def _set_gradient_checkpointing(self, module, value=False):
- if isinstance(module, GPT2Model):
- module.gradient_checkpointing = value
-
-
- @dataclass
- class GPT2DoubleHeadsModelOutput(ModelOutput):
- """
- Base class for outputs of models predicting if two sentences are consecutive or not.
-
- Args:
- loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided):
- Language modeling loss.
- mc_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`mc_labels` is provided):
- Multiple choice classification loss.
- logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices, sequence_length, config.vocab_size)`):
- Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
- mc_logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`):
- Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
- past_key_values (:obj:`Tuple[Tuple[torch.Tensor]]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
- Tuple of length :obj:`config.n_layers`, containing tuples of tensors of shape :obj:`(batch_size, num_heads,
- sequence_length, embed_size_per_head)`).
-
- Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
- :obj:`past_key_values` input) to speed up sequential decoding.
- hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
- Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
- of shape :obj:`(batch_size, sequence_length, hidden_size)`.
-
- Hidden-states of the model at the output of each layer plus the initial embedding outputs.
- attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
- Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads,
- sequence_length, sequence_length)`.
-
- GPT2Attentions weights after the attention softmax, used to compute the weighted average in the
- self-attention heads.
- """
-
- loss: Optional["torch.FloatTensor"] = None
- mc_loss: Optional["torch.FloatTensor"] = None
- logits: "torch.FloatTensor" = None
- mc_logits: "torch.FloatTensor" = None
- past_key_values: Optional[Tuple[Tuple["torch.FloatTensor"]]] = None
- hidden_states: Optional[Tuple["torch.FloatTensor"]] = None
- attentions: Optional[Tuple["torch.FloatTensor"]] = None
-
-
- GPT2_START_DOCSTRING = r"""
-
- This model inherits from :class:`~transformers.PreTrainedModel`. Check the superclass documentation for the generic
- methods the library implements for all its model (such as downloading or saving, resizing the input embeddings,
- pruning heads etc.)
-
- This model is also a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`__
- subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
- general usage and behavior.
-
- Parameters:
- config (:class:`~transformers.GPT2Config`): Model configuration class with all the parameters of the model.
- Initializing with a config file does not load the weights associated with the model, only the
- configuration. Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model
- weights.
- """
-
- GPT2_INPUTS_DOCSTRING = r"""
- Args:
- input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`):
- :obj:`input_ids_length` = ``sequence_length`` if :obj:`past_key_values` is ``None`` else
- ``past_key_values[0][0].shape[-2]`` (``sequence_length`` of input past key value states). Indices of input
- sequence tokens in the vocabulary.
-
- If :obj:`past_key_values` is used, only ``input_ids`` that do not have their past calculated should be
- passed as ``input_ids``.
-
- Indices can be obtained using :class:`~transformers.GPT2Tokenizer`. See
- :meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__` for
- details.
-
- `What are input IDs? <../glossary.html#input-ids>`__
- past_key_values (:obj:`Tuple[Tuple[torch.Tensor]]` of length :obj:`config.n_layers`):
- Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
- :obj:`past_key_values` output below). Can be used to speed up sequential decoding. The ``input_ids`` which
- have their past given to this model should not be passed as ``input_ids`` as they have already been
- computed.
- attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
- Mask to avoid performing attention on padding token indices. Mask values selected in ``[0, 1]``:
-
- - 1 for tokens that are **not masked**,
- - 0 for tokens that are **masked**.
-
- `What are attention masks? <../glossary.html#attention-mask>`__
- token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, input_ids_length)`, `optional`):
- Segment token indices to indicate first and second portions of the inputs. Indices are selected in ``[0,
- 1]``:
-
- - 0 corresponds to a `sentence A` token,
- - 1 corresponds to a `sentence B` token.
-
- `What are token type IDs? <../glossary.html#token-type-ids>`_
- position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range ``[0,
- config.max_position_embeddings - 1]``.
-
- `What are position IDs? <../glossary.html#position-ids>`_
- head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`):
- Mask to nullify selected heads of the self-attention modules. Mask values selected in ``[0, 1]``:
-
- - 1 indicates the head is **not masked**,
- - 0 indicates the head is **masked**.
-
- inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
- Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
- This is useful if you want more control over how to convert :obj:`input_ids` indices into associated
- vectors than the model's internal embedding lookup matrix.
-
- If :obj:`past_key_values` is used, optionally only the last :obj:`inputs_embeds` have to be input (see
- :obj:`past_key_values`).
- use_cache (:obj:`bool`, `optional`):
- If set to :obj:`True`, :obj:`past_key_values` key value states are returned and can be used to speed up
- decoding (see :obj:`past_key_values`).
- output_attentions (:obj:`bool`, `optional`):
- Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
- tensors for more detail.
- output_hidden_states (:obj:`bool`, `optional`):
- Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
- more detail.
- return_dict (:obj:`bool`, `optional`):
- Whether or not to return a :class:`~transformers.file_utils.ModelOutput` instead of a plain tuple.
- """
- PARALLELIZE_DOCSTRING = r"""
- This is an experimental feature and is a subject to change at a moment's notice.
-
- Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
- it will evenly distribute blocks across all devices.
-
- Args:
- device_map (:obj:`Dict[int, list]`, optional, defaults to None):
- A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
- automatically mapped to the first device (for esoteric reasons). That means that the first device should
- have fewer attention modules mapped to it than other devices. For reference, the gpt2 models have the
- following number of attention modules:
-
- - gpt2: 12
- - gpt2-medium: 24
- - gpt2-large: 36
- - gpt2-xl: 48
-
- Example::
-
- # Here is an example of a device map on a machine with 4 GPUs using gpt2-xl, which has a total of 48 attention modules:
- model = GPT2LMHeadModel.from_pretrained('gpt2-xl')
- device_map = {0: [0, 1, 2, 3, 4, 5, 6, 7, 8],
-
- 1: [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21],
- 2: [22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],
- 3: [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]}
- model.parallelize(device_map)
- """
- DEPARALLELIZE_DOCSTRING = r"""
- Moves the model to cpu from a model parallel state.
-
- Example::
-
- # On a 4 GPU machine with gpt2-large:
- model = GPT2LMHeadModel.from_pretrained('gpt2-large')
- device_map = {0: [0, 1, 2, 3, 4, 5, 6, 7],
-
- 1: [8, 9, 10, 11, 12, 13, 14, 15],
- 2: [16, 17, 18, 19, 20, 21, 22, 23],
- 3: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35]}
- model.parallelize(device_map) # Splits the model across several devices
- model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
- """
-
-
- @add_start_docstrings(
- "The bare GPT2 Model transformer outputting raw hidden-states without any specific head on top.",
- GPT2_START_DOCSTRING,
- )
- class GPT2Model(GPT2PreTrainedModel):
- _keys_to_ignore_on_load_missing = ["attn.masked_bias"]
-
- def __init__(self, config):
- super().__init__(config)
-
- self.embed_dim = config.hidden_size
-
- self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
- self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
-
- self.drop = nn.Dropout(config.embd_pdrop)
- self.h = nn.ModuleList([GPT2Block(config) for _ in range(config.num_hidden_layers)])
- self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
-
- self.init_weights()
-
- # Model parallel
- self.model_parallel = False
- self.device_map = None
- self.gradient_checkpointing = False
-
- @add_start_docstrings(PARALLELIZE_DOCSTRING)
- def parallelize(self, device_map=None):
- # Check validity of device_map
- self.device_map = (
- get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
- )
- assert_device_map(self.device_map, len(self.h))
- self.model_parallel = True
- self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
- self.last_device = "cuda:" + str(max(self.device_map.keys()))
- self.wte = self.wte.to(self.first_device)
- self.wpe = self.wpe.to(self.first_device)
- # Load onto devices
- for k, v in self.device_map.items():
- for block in v:
- cuda_device = "cuda:" + str(k)
- self.h[block] = self.h[block].to(cuda_device)
- # ln_f to last
- self.ln_f = self.ln_f.to(self.last_device)
-
- @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
- def deparallelize(self):
- self.model_parallel = False
- self.device_map = None
- self.first_device = "cpu"
- self.last_device = "cpu"
- self.wte = self.wte.to("cpu")
- self.wpe = self.wpe.to("cpu")
- for index in range(len(self.h)):
- self.h[index] = self.h[index].to("cpu")
- self.ln_f = self.ln_f.to("cpu")
- torch.cuda.empty_cache()
-
- def get_input_embeddings(self):
- return self.wte
-
- def set_input_embeddings(self, new_embeddings):
- self.wte = new_embeddings
-
- def _prune_heads(self, heads_to_prune):
- """
- Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
- """
- for layer, heads in heads_to_prune.items():
- self.h[layer].attn.prune_heads(heads)
-
- @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- tokenizer_class=_TOKENIZER_FOR_DOC,
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=BaseModelOutputWithPastAndCrossAttentions,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids=None,
- past_key_values=None,
- attention_mask=None,
- token_type_ids=None,
- position_ids=None,
- head_mask=None,
- inputs_embeds=None,
- encoder_hidden_states=None,
- encoder_attention_mask=None,
- use_cache=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- ):
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
- output_hidden_states = (
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
- )
- use_cache = use_cache if use_cache is not None else self.config.use_cache
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
- if input_ids is not None and inputs_embeds is not None:
- raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
- elif input_ids is not None:
- input_shape = input_ids.size()
- input_ids = input_ids.view(-1, input_shape[-1])
- batch_size = input_ids.shape[0]
- elif inputs_embeds is not None:
- input_shape = inputs_embeds.size()[:-1]
- batch_size = inputs_embeds.shape[0]
- else:
- raise ValueError("You have to specify either input_ids or inputs_embeds")
-
- device = input_ids.device if input_ids is not None else inputs_embeds.device
-
- if token_type_ids is not None:
- token_type_ids = token_type_ids.view(-1, input_shape[-1])
- if position_ids is not None:
- position_ids = position_ids.view(-1, input_shape[-1])
-
- if past_key_values is None:
- past_length = 0
- past_key_values = tuple([None] * len(self.h))
- else:
- past_length = past_key_values[0][0].size(-2)
- if position_ids is None:
- position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
- position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])
-
- # GPT2Attention mask.
- if attention_mask is not None:
- if batch_size <= 0:
- raise ValueError("batch_size has to be defined and > 0")
- attention_mask = attention_mask.view(batch_size, -1)
- # We create a 3D attention mask from a 2D tensor mask.
- # Sizes are [batch_size, 1, 1, to_seq_length]
- # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
- # this attention mask is more simple than the triangular masking of causal attention
- # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
- attention_mask = attention_mask[:, None, None, :]
-
- # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
- # masked positions, this operation will create a tensor which is 0.0 for
- # positions we want to attend and -10000.0 for masked positions.
- # Since we are adding it to the raw scores before the softmax, this is
- # effectively the same as removing these entirely.
- attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
- attention_mask = (1.0 - attention_mask) * -10000.0
-
- # If a 2D ou 3D attention mask is provided for the cross-attention
- # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
- if self.config.add_cross_attention and encoder_hidden_states is not None:
- encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
- encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
- if encoder_attention_mask is None:
- encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
- encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
- else:
- encoder_attention_mask = None
-
- # Prepare head mask if needed
- # 1.0 in head_mask indicate we keep the head
- # attention_probs has shape bsz x n_heads x N x N
- # head_mask has shape n_layer x batch x n_heads x N x N
- head_mask = self.get_head_mask(head_mask, self.config.n_layer)
-
- if inputs_embeds is None:
- inputs_embeds = self.wte(input_ids)
- position_embeds = self.wpe(position_ids)
- hidden_states = inputs_embeds + position_embeds
-
- if token_type_ids is not None:
- token_type_embeds = self.wte(token_type_ids)
- hidden_states = hidden_states + token_type_embeds
-
- hidden_states = self.drop(hidden_states)
-
- output_shape = input_shape + (hidden_states.size(-1),)
-
- presents = () if use_cache else None
- all_self_attentions = () if output_attentions else None
- all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
- all_hidden_states = () if output_hidden_states else None
- for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
-
- # Model parallel
- if self.model_parallel:
- torch.cuda.set_device(hidden_states.device)
- # Ensure layer_past is on same device as hidden_states (might not be correct)
- if layer_past is not None:
- layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
- # Ensure that attention_mask is always on the same device as hidden_states
- if attention_mask is not None:
- attention_mask = attention_mask.to(hidden_states.device)
- if isinstance(head_mask, torch.Tensor):
- head_mask = head_mask.to(hidden_states.device)
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
-
- if self.gradient_checkpointing and self.training:
-
- if use_cache:
- logger.warning(
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
- )
- use_cache = False
-
- def create_custom_forward(module):
- def custom_forward(*inputs):
- # None for past_key_value
- return module(*inputs, use_cache, output_attentions)
-
- return custom_forward
-
- outputs = torch.utils.checkpoint.checkpoint(
- create_custom_forward(block),
- hidden_states,
- None,
- attention_mask,
- head_mask[i],
- encoder_hidden_states,
- encoder_attention_mask,
- )
- else:
- outputs = block(
- hidden_states,
- layer_past=layer_past,
- attention_mask=attention_mask,
- head_mask=head_mask[i],
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- use_cache=use_cache,
- output_attentions=output_attentions,
- )
-
- hidden_states = outputs[0]
- if use_cache is True:
- presents = presents + (outputs[1],)
-
- if output_attentions:
- all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
- if self.config.add_cross_attention:
- all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
-
- # Model Parallel: If it's the last layer for that device, put things on the next device
- if self.model_parallel:
- for k, v in self.device_map.items():
- if i == v[-1] and "cuda:" + str(k) != self.last_device:
- hidden_states = hidden_states.to("cuda:" + str(k + 1))
-
- hidden_states = self.ln_f(hidden_states)
-
- hidden_states = hidden_states.view(*output_shape)
- # Add last hidden state
- if output_hidden_states:
- all_hidden_states = all_hidden_states + (hidden_states,)
-
- if not return_dict:
- return tuple(
- v
- for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
- if v is not None
- )
-
- return BaseModelOutputWithPastAndCrossAttentions(
- last_hidden_state=hidden_states,
- past_key_values=presents,
- hidden_states=all_hidden_states,
- attentions=all_self_attentions,
- cross_attentions=all_cross_attentions,
- )
-
-
- @add_start_docstrings(
- """
- The GPT2 Model transformer with a language modeling head on top (linear layer with weights tied to the input
- embeddings).
- """,
- GPT2_START_DOCSTRING,
- )
- class GPT2LMHeadModel(GPT2PreTrainedModel):
- _keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
-
- def __init__(self, config):
- super().__init__(config)
- self.transformer = GPT2Model(config)
- self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
-
- self.init_weights()
-
- # Model parallel
- self.model_parallel = False
- self.device_map = None
-
- @add_start_docstrings(PARALLELIZE_DOCSTRING)
- def parallelize(self, device_map=None):
- self.device_map = (
- get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
- if device_map is None
- else device_map
- )
- assert_device_map(self.device_map, len(self.transformer.h))
- self.transformer.parallelize(self.device_map)
- self.lm_head = self.lm_head.to(self.transformer.first_device)
- self.model_parallel = True
-
- @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
- def deparallelize(self):
- self.transformer.deparallelize()
- self.transformer = self.transformer.to("cpu")
- self.lm_head = self.lm_head.to("cpu")
- self.model_parallel = False
- torch.cuda.empty_cache()
-
- def get_output_embeddings(self):
- return self.lm_head
-
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
-
- def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
- token_type_ids = kwargs.get("token_type_ids", None)
- # only last token for inputs_ids if past is defined in kwargs
- if past:
- input_ids = input_ids[:, -1].unsqueeze(-1)
- if token_type_ids is not None:
- token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
-
- attention_mask = kwargs.get("attention_mask", None)
- position_ids = kwargs.get("position_ids", None)
-
- if attention_mask is not None and position_ids is None:
- # create position_ids on the fly for batch generation
- position_ids = attention_mask.long().cumsum(-1) - 1
- position_ids.masked_fill_(attention_mask == 0, 1)
- if past:
- position_ids = position_ids[:, -1].unsqueeze(-1)
- else:
- position_ids = None
- return {
- "input_ids": input_ids,
- "past_key_values": past,
- "use_cache": kwargs.get("use_cache"),
- "position_ids": position_ids,
- "attention_mask": attention_mask,
- "token_type_ids": token_type_ids,
- }
-
- @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- tokenizer_class=_TOKENIZER_FOR_DOC,
- checkpoint=_CHECKPOINT_FOR_DOC,
- output_type=CausalLMOutputWithCrossAttentions,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids=None,
- past_key_values=None,
- attention_mask=None,
- token_type_ids=None,
- position_ids=None,
- head_mask=None,
- inputs_embeds=None,
- encoder_hidden_states=None,
- encoder_attention_mask=None,
- labels=None,
- use_cache=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- ):
- r"""
- labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
- Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
- ``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size]`` All labels set to
- ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size]``
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
- transformer_outputs = self.transformer(
- input_ids,
- past_key_values=past_key_values,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- encoder_hidden_states=encoder_hidden_states,
- encoder_attention_mask=encoder_attention_mask,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
-
- # Set device for model parallelism
- if self.model_parallel:
- torch.cuda.set_device(self.transformer.first_device)
- hidden_states = hidden_states.to(self.lm_head.weight.device)
-
- lm_logits = self.lm_head(hidden_states)
-
- loss = None
- if labels is not None:
- # Shift so that tokens < n predict n
- shift_logits = lm_logits[..., :-1, :].contiguous()
- shift_labels = labels[..., 1:].contiguous()
- # Flatten the tokens
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
-
- if not return_dict:
- output = (lm_logits,) + transformer_outputs[1:]
- return ((loss,) + output) if loss is not None else output
-
- return CausalLMOutputWithCrossAttentions(
- loss=loss,
- logits=lm_logits,
- past_key_values=transformer_outputs.past_key_values,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- cross_attentions=transformer_outputs.cross_attentions,
- )
-
- @staticmethod
- def _reorder_cache(past: Tuple[Tuple["torch.Tensor"]], beam_idx: "torch.Tensor") -> Tuple[Tuple["torch.Tensor"]]:
- """
- This function is used to re-order the :obj:`past_key_values` cache if
- :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
- called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
- """
- return tuple(
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
- for layer_past in past
- )
-
-
- @add_start_docstrings(
- """
- The GPT2 Model transformer with a language modeling and a multiple-choice classification head on top e.g. for
- RocStories/SWAG tasks. The two heads are two linear layers. The language modeling head has its weights tied to the
- input embeddings, the classification head takes as input the input of a specified classification token index in the
- input sequence).
- """,
- GPT2_START_DOCSTRING,
- )
- class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
- _keys_to_ignore_on_load_missing = [r"attn.masked_bias", r"attn.bias", r"lm_head.weight"]
-
- def __init__(self, config):
- super().__init__(config)
- config.num_labels = 1
- self.transformer = GPT2Model(config)
- self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
- self.multiple_choice_head = SequenceSummary(config)
-
- self.init_weights()
-
- # Model parallel
- self.model_parallel = False
- self.device_map = None
-
- @add_start_docstrings(PARALLELIZE_DOCSTRING)
- def parallelize(self, device_map=None):
- self.device_map = (
- get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
- if device_map is None
- else device_map
- )
- assert_device_map(self.device_map, len(self.transformer.h))
- self.transformer.parallelize(self.device_map)
- self.lm_head = self.lm_head.to(self.transformer.first_device)
- self.multiple_choice_head = self.multiple_choice_head.to(self.transformer.first_device)
- self.model_parallel = True
-
- @add_start_docstrings(DEPARALLELIZE_DOCSTRING)
- def deparallelize(self):
- self.transformer.deparallelize()
- self.transformer = self.transformer.to("cpu")
- self.lm_head = self.lm_head.to("cpu")
- self.multiple_choice_head = self.multiple_choice_head.to("cpu")
- self.model_parallel = False
- torch.cuda.empty_cache()
-
- def get_output_embeddings(self):
- return self.lm_head
-
- def set_output_embeddings(self, new_embeddings):
- self.lm_head = new_embeddings
-
- def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
- token_type_ids = kwargs.get("token_type_ids", None)
- # only last token for inputs_ids if past is defined in kwargs
- if past:
- input_ids = input_ids[:, -1].unsqueeze(-1)
- if token_type_ids is not None:
- token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
-
- attention_mask = kwargs.get("attention_mask", None)
- position_ids = kwargs.get("position_ids", None)
-
- if attention_mask is not None and position_ids is None:
- # create position_ids on the fly for batch generation
- position_ids = attention_mask.long().cumsum(-1) - 1
- position_ids.masked_fill_(attention_mask == 0, 1)
- if past:
- position_ids = position_ids[:, -1].unsqueeze(-1)
- else:
- position_ids = None
-
- return {
- "input_ids": input_ids,
- "past_key_values": past,
- "use_cache": kwargs.get("use_cache"),
- "position_ids": position_ids,
- "attention_mask": attention_mask,
- "token_type_ids": token_type_ids,
- }
-
- @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
- @replace_return_docstrings(output_type=GPT2DoubleHeadsModelOutput, config_class=_CONFIG_FOR_DOC)
- def forward(
- self,
- input_ids=None,
- past_key_values=None,
- attention_mask=None,
- token_type_ids=None,
- position_ids=None,
- head_mask=None,
- inputs_embeds=None,
- mc_token_ids=None,
- labels=None,
- mc_labels=None,
- use_cache=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- **kwargs,
- ):
- r"""
- mc_token_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, num_choices)`, `optional`, default to index of the last token of the input):
- Index of the classification token in each input sequence. Selected in the range ``[0, input_ids.size(-1) -
- 1[``.
- labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
- Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
- ``labels = input_ids`` Indices are selected in ``[-100, 0, ..., config.vocab_size - 1]`` All labels set to
- ``-100`` are ignored (masked), the loss is only computed for labels in ``[0, ..., config.vocab_size - 1]``
- mc_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size)`, `optional`):
- Labels for computing the multiple choice classification loss. Indices should be in ``[0, ...,
- num_choices]`` where `num_choices` is the size of the second dimension of the input tensors. (see
- `input_ids` above)
-
- Return:
-
- Example::
-
- >>> import torch
- >>> from transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
-
- >>> tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
- >>> model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
-
- >>> # Add a [CLS] to the vocabulary (we should train it also!)
- >>> num_added_tokens = tokenizer.add_special_tokens({'cls_token': '[CLS]'})
-
- >>> embedding_layer = model.resize_token_embeddings(len(tokenizer)) # Update the model embeddings with the new vocabulary size
-
- >>> choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
- >>> encoded_choices = [tokenizer.encode(s) for s in choices]
- >>> cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]
-
- >>> input_ids = torch.tensor(encoded_choices).unsqueeze(0) # Batch size: 1, number of choices: 2
- >>> mc_token_ids = torch.tensor([cls_token_location]) # Batch size: 1
-
- >>> outputs = model(input_ids, mc_token_ids=mc_token_ids)
- >>> lm_logits = outputs.logits
- >>> mc_logits = outputs.mc_logits
-
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
- transformer_outputs = self.transformer(
- input_ids,
- past_key_values=past_key_values,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
-
- hidden_states = transformer_outputs[0]
-
- # Set device for model parallelism
- if self.model_parallel:
- torch.cuda.set_device(self.transformer.first_device)
- hidden_states = hidden_states.to(self.lm_head.weight.device)
-
- lm_logits = self.lm_head(hidden_states)
- mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)
-
- mc_loss = None
- if mc_labels is not None:
- loss_fct = CrossEntropyLoss()
- mc_loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)), mc_labels.view(-1))
- lm_loss = None
- if labels is not None:
- shift_logits = lm_logits[..., :-1, :].contiguous()
- shift_labels = labels[..., 1:].contiguous()
- loss_fct = CrossEntropyLoss()
- lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
-
- if not return_dict:
- output = (lm_logits, mc_logits) + transformer_outputs[1:]
- if mc_loss is not None:
- output = (mc_loss,) + output
- return ((lm_loss,) + output) if lm_loss is not None else output
-
- return GPT2DoubleHeadsModelOutput(
- loss=lm_loss,
- mc_loss=mc_loss,
- logits=lm_logits,
- mc_logits=mc_logits,
- past_key_values=transformer_outputs.past_key_values,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
-
- @staticmethod
- def _reorder_cache(past: Tuple[Tuple["torch.Tensor"]], beam_idx: "torch.Tensor") -> Tuple[Tuple["torch.Tensor"]]:
- """
- This function is used to re-order the :obj:`past_key_values` cache if
- :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
- called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
- """
- return tuple(
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
- for layer_past in past
- )
-
-
- @add_start_docstrings(
- """
- The GPT2 Model transformer with a sequence classification head on top (linear layer).
-
- :class:`~transformers.GPT2ForSequenceClassification` uses the last token in order to do the classification, as
- other causal models (e.g. GPT-1) do.
-
- Since it does classification on the last token, it requires to know the position of the last token. If a
- :obj:`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each
- row. If no :obj:`pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot
- guess the padding tokens when :obj:`inputs_embeds` are passed instead of :obj:`input_ids`, it does the same (take
- the last value in each row of the batch).
- """,
- GPT2_START_DOCSTRING,
- )
- class GPT2ForSequenceClassification(GPT2PreTrainedModel):
- _keys_to_ignore_on_load_missing = [r"h\.\d+\.attn\.masked_bias", r"lm_head\.weight"]
-
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
- self.transformer = GPT2Model(config)
- self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
-
- self.init_weights()
-
- # Model parallel
- self.model_parallel = False
- self.device_map = None
-
- @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- tokenizer_class=_TOKENIZER_FOR_DOC,
- checkpoint="microsoft/DialogRPT-updown",
- output_type=SequenceClassifierOutputWithPast,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids=None,
- past_key_values=None,
- attention_mask=None,
- token_type_ids=None,
- position_ids=None,
- head_mask=None,
- inputs_embeds=None,
- labels=None,
- use_cache=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- ):
- r"""
- labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
- Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
- config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
- If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
- transformer_outputs = self.transformer(
- input_ids,
- past_key_values=past_key_values,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
- hidden_states = transformer_outputs[0]
- logits = self.score(hidden_states)
-
- if input_ids is not None:
- batch_size, sequence_length = input_ids.shape[:2]
- else:
- batch_size, sequence_length = inputs_embeds.shape[:2]
-
- assert (
- self.config.pad_token_id is not None or batch_size == 1
- ), "Cannot handle batch sizes > 1 if no padding token is defined."
- if self.config.pad_token_id is None:
- sequence_lengths = -1
- else:
- if input_ids is not None:
- sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
- else:
- sequence_lengths = -1
- logger.warning(
- f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
- f"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
- )
-
- pooled_logits = logits[range(batch_size), sequence_lengths]
-
- loss = None
- if labels is not None:
- if self.num_labels == 1:
- # We are doing regression
- loss_fct = MSELoss()
- loss = loss_fct(pooled_logits.view(-1), labels.to(self.dtype).view(-1))
- else:
- loss_fct = CrossEntropyLoss()
- loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
-
- if not return_dict:
- output = (pooled_logits,) + transformer_outputs[1:]
- return ((loss,) + output) if loss is not None else output
-
- return SequenceClassifierOutputWithPast(
- loss=loss,
- logits=pooled_logits,
- past_key_values=transformer_outputs.past_key_values,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
-
-
- @add_start_docstrings(
- """
- GPT2 Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
- Named-Entity-Recognition (NER) tasks.
- """,
- GPT2_START_DOCSTRING,
- )
- class GPT2ForTokenClassification(GPT2PreTrainedModel):
- def __init__(self, config):
- super().__init__(config)
- self.num_labels = config.num_labels
-
- self.transformer = GPT2Model(config)
- if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
- classifier_dropout = config.classifier_dropout
- elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
- classifier_dropout = config.hidden_dropout
- else:
- classifier_dropout = 0.1
- self.dropout = nn.Dropout(classifier_dropout)
- self.classifier = nn.Linear(config.hidden_size, config.num_labels)
-
- self.init_weights()
-
- # Model parallel
- self.model_parallel = False
- self.device_map = None
-
- @add_start_docstrings_to_model_forward(GPT2_INPUTS_DOCSTRING)
- @add_code_sample_docstrings(
- tokenizer_class=_TOKENIZER_FOR_DOC,
- checkpoint="microsoft/DialogRPT-updown",
- output_type=TokenClassifierOutput,
- config_class=_CONFIG_FOR_DOC,
- )
- def forward(
- self,
- input_ids=None,
- past_key_values=None,
- attention_mask=None,
- token_type_ids=None,
- position_ids=None,
- head_mask=None,
- inputs_embeds=None,
- labels=None,
- use_cache=None,
- output_attentions=None,
- output_hidden_states=None,
- return_dict=None,
- ):
- r"""
- labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
- Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
- config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
- If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
- """
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
-
- transformer_outputs = self.transformer(
- input_ids,
- past_key_values=past_key_values,
- attention_mask=attention_mask,
- token_type_ids=token_type_ids,
- position_ids=position_ids,
- head_mask=head_mask,
- inputs_embeds=inputs_embeds,
- use_cache=use_cache,
- output_attentions=output_attentions,
- output_hidden_states=output_hidden_states,
- return_dict=return_dict,
- )
-
- hidden_states = transformer_outputs[0]
- hidden_states = self.dropout(hidden_states)
- logits = self.classifier(hidden_states)
-
- loss = None
- if labels is not None:
- loss_fct = CrossEntropyLoss()
- # Only keep active parts of the loss
- if attention_mask is not None:
- active_loss = attention_mask.view(-1) == 1
- active_logits = logits.view(-1, self.num_labels)
- active_labels = torch.where(
- active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
- )
- loss = loss_fct(active_logits, active_labels)
- else:
- loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
-
- if not return_dict:
- output = (logits,) + transformer_outputs[2:]
- return ((loss,) + output) if loss is not None else output
-
- return TokenClassifierOutput(
- loss=loss,
- logits=logits,
- hidden_states=transformer_outputs.hidden_states,
- attentions=transformer_outputs.attentions,
- )
|