|
- """
- optimizer 模块定义了 fastNLP 中所需的各种优化器,一般做为 :class:`~fastNLP.Trainer` 的参数使用。
-
- """
- __all__ = [
- "Optimizer",
- "SGD",
- "Adam",
- "AdamW"
- ]
-
- import torch
- import math
- import torch
- from torch.optim.optimizer import Optimizer as TorchOptimizer
-
-
- class Optimizer(object):
- """
- 别名::class:`fastNLP.Optimizer` :class:`fastNLP.core.optimizer.Optimizer`
-
- :param model_params: a generator. E.g. ``model.parameters()`` for PyTorch models.
- :param kwargs: additional parameters.
- """
-
- def __init__(self, model_params, **kwargs):
- if model_params is not None and not hasattr(model_params, "__next__"):
- raise RuntimeError("model parameters should be a generator, rather than {}.".format(type(model_params)))
- self.model_params = model_params
- self.settings = kwargs
-
- def construct_from_pytorch(self, model_params):
- raise NotImplementedError
-
- def _get_require_grads_param(self, params):
- """
- 将params中不需要gradient的删除
- :param iterable params: parameters
- :return: list(nn.Parameters)
- """
- return [param for param in params if param.requires_grad]
-
- class NullOptimizer(Optimizer):
- """
- 当不希望Trainer更新optimizer时,传入本optimizer,但请确保通过callback的方式对参数进行了更新。
-
- """
- def __init__(self):
- super().__init__(None)
-
- def construct_from_pytorch(self, model_params):
- pass
-
- def __getattr__(self, item):
- def pass_func(*args, **kwargs):
- pass
-
- return pass_func
-
-
- class SGD(Optimizer):
- """
- 别名::class:`fastNLP.SGD` :class:`fastNLP.core.optimizer.SGD`
-
- :param float lr: learning rate. Default: 0.01
- :param float momentum: momentum. Default: 0
- :param model_params: a generator. E.g. ``model.parameters()`` for PyTorch models.
- """
-
- def __init__(self, lr=0.001, momentum=0, model_params=None):
- if not isinstance(lr, float):
- raise TypeError("learning rate has to be float.")
- super(SGD, self).__init__(model_params, lr=lr, momentum=momentum)
-
- def construct_from_pytorch(self, model_params):
- if self.model_params is None:
- # careful! generator cannot be assigned.
- return torch.optim.SGD(self._get_require_grads_param(model_params), **self.settings)
- else:
- return torch.optim.SGD(self._get_require_grads_param(self.model_params), **self.settings)
-
-
- class Adam(Optimizer):
- """
- 别名::class:`fastNLP.Adam` :class:`fastNLP.core.optimizer.Adam`
-
- :param float lr: learning rate
- :param float weight_decay:
- :param model_params: a generator. E.g. ``model.parameters()`` for PyTorch models.
- """
-
- def __init__(self, lr=0.001, weight_decay=0, betas=(0.9, 0.999), eps=1e-8, amsgrad=False, model_params=None):
- if not isinstance(lr, float):
- raise TypeError("learning rate has to be float.")
- super(Adam, self).__init__(model_params, lr=lr, betas=betas, eps=eps, amsgrad=amsgrad,
- weight_decay=weight_decay)
-
- def construct_from_pytorch(self, model_params):
- if self.model_params is None:
- # careful! generator cannot be assigned.
- return torch.optim.Adam(self._get_require_grads_param(model_params), **self.settings)
- else:
- return torch.optim.Adam(self._get_require_grads_param(self.model_params), **self.settings)
-
-
- class AdamW(TorchOptimizer):
- r"""对AdamW的实现,该实现应该会在pytorch更高版本中出现,https://github.com/pytorch/pytorch/pull/21250。这里提前加入
-
- .. todo::
- 翻译成中文
-
- The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_.
- The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_.
- Arguments:
- params (iterable): iterable of parameters to optimize or dicts defining
- parameter groups
- lr (float, optional): learning rate (default: 1e-3)
- betas (Tuple[float, float], optional): coefficients used for computing
- running averages of gradient and its square (default: (0.9, 0.99))
- eps (float, optional): term added to the denominator to improve
- numerical stability (default: 1e-8)
- weight_decay (float, optional): weight decay coefficient (default: 1e-2)
- amsgrad (boolean, optional): whether to use the AMSGrad variant of this
- algorithm from the paper `On the Convergence of Adam and Beyond`_
- (default: False)
- .. _Adam\: A Method for Stochastic Optimization:
- https://arxiv.org/abs/1412.6980
- .. _Decoupled Weight Decay Regularization:
- https://arxiv.org/abs/1711.05101
- .. _On the Convergence of Adam and Beyond:
- https://openreview.net/forum?id=ryQu7f-RZ
- """
-
- def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
- weight_decay=1e-2, amsgrad=False):
- if not 0.0 <= lr:
- raise ValueError("Invalid learning rate: {}".format(lr))
- if not 0.0 <= eps:
- raise ValueError("Invalid epsilon value: {}".format(eps))
- if not 0.0 <= betas[0] < 1.0:
- raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
- if not 0.0 <= betas[1] < 1.0:
- raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
- defaults = dict(lr=lr, betas=betas, eps=eps,
- weight_decay=weight_decay, amsgrad=amsgrad)
- super(AdamW, self).__init__(params, defaults)
-
- def __setstate__(self, state):
- super(AdamW, self).__setstate__(state)
- for group in self.param_groups:
- group.setdefault('amsgrad', False)
-
- def step(self, closure=None):
- """Performs a single optimization step.
- Arguments:
- closure (callable, optional): A closure that reevaluates the model
- and returns the loss.
- """
- loss = None
- if closure is not None:
- loss = closure()
-
- for group in self.param_groups:
- for p in group['params']:
- if p.grad is None:
- continue
-
- # Perform stepweight decay
- p.data.mul_(1 - group['lr'] * group['weight_decay'])
-
- # Perform optimization step
- grad = p.grad.data
- if grad.is_sparse:
- raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
- amsgrad = group['amsgrad']
-
- state = self.state[p]
-
- # State initialization
- if len(state) == 0:
- state['step'] = 0
- # Exponential moving average of gradient values
- state['exp_avg'] = torch.zeros_like(p.data)
- # Exponential moving average of squared gradient values
- state['exp_avg_sq'] = torch.zeros_like(p.data)
- if amsgrad:
- # Maintains max of all exp. moving avg. of sq. grad. values
- state['max_exp_avg_sq'] = torch.zeros_like(p.data)
-
- exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
- if amsgrad:
- max_exp_avg_sq = state['max_exp_avg_sq']
- beta1, beta2 = group['betas']
-
- state['step'] += 1
-
- # Decay the first and second moment running average coefficient
- exp_avg.mul_(beta1).add_(1 - beta1, grad)
- exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
- if amsgrad:
- # Maintains the maximum of all 2nd moment running avg. till now
- torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq)
- # Use the max. for normalizing running avg. of gradient
- denom = max_exp_avg_sq.sqrt().add_(group['eps'])
- else:
- denom = exp_avg_sq.sqrt().add_(group['eps'])
-
- bias_correction1 = 1 - beta1 ** state['step']
- bias_correction2 = 1 - beta2 ** state['step']
- step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
-
- p.data.addcdiv_(-step_size, exp_avg, denom)
-
- return loss
|