|
- """
- tester模块实现了 fastNLP 所需的Tester类,能在提供数据、模型以及metric的情况下进行性能测试。
-
- .. code-block::
-
- import numpy as np
- import torch
- from torch import nn
- from fastNLP import Tester
- from fastNLP import DataSet
- from fastNLP import AccuracyMetric
-
- class Model(nn.Module):
- def __init__(self):
- super().__init__()
- self.fc = nn.Linear(1, 1)
- def forward(self, a):
- return {'pred': self.fc(a.unsqueeze(1)).squeeze(1)}
-
- model = Model()
-
- dataset = DataSet({'a': np.arange(10, dtype=float), 'b':np.arange(10, dtype=float)*2})
-
- dataset.set_input('a')
- dataset.set_target('b')
-
- tester = Tester(dataset, model, metrics=AccuracyMetric())
- eval_results = tester.test()
-
- 这里Metric的映射规律是和 :class:`fastNLP.Trainer` 中一致的,具体使用请参考 :mod:`trainer 模块<fastNLP.core.trainer>` 的1.3部分。
- Tester在验证进行之前会调用model.eval()提示当前进入了evaluation阶段,即会关闭nn.Dropout()等,在验证结束之后会调用model.train()恢复到训练状态。
-
-
- """
- import time
-
- import torch
- import torch.nn as nn
-
- try:
- from tqdm.auto import tqdm
- except:
- from .utils import _pseudo_tqdm as tqdm
-
- from .batch import BatchIter, DataSetIter
- from .dataset import DataSet
- from .metrics import _prepare_metrics
- from .sampler import SequentialSampler
- from .utils import _CheckError
- from .utils import _build_args
- from .utils import _check_loss_evaluate
- from .utils import _move_dict_value_to_device
- from .utils import _get_func_signature
- from .utils import _get_model_device
- from .utils import _move_model_to_device
- from ._parallel_utils import _data_parallel_wrapper
- from ._parallel_utils import _model_contains_inner_module
- from functools import partial
- from ._logger import logger
-
- __all__ = [
- "Tester"
- ]
-
-
- class Tester(object):
- """
- Tester是在提供数据,模型以及metric的情况下进行性能测试的类。需要传入模型,数据以及metric进行验证。
- """
-
- def __init__(self, data, model, metrics, batch_size=16, num_workers=0, device=None, verbose=1, use_tqdm=True):
- """
-
- :param ~fastNLP.DataSet data: 需要测试的数据集
- :param torch.nn.module model: 使用的模型
- :param ~fastNLP.core.metrics.MetricBase,List[~fastNLP.core.metrics.MetricBase] metrics: 测试时使用的metrics
- :param int batch_size: evaluation时使用的batch_size有多大。
- :param str,int,torch.device,list(int) device: 将模型load到哪个设备。默认为None,即Trainer不对模型
- 的计算位置进行管理。支持以下的输入:
-
- 1. str: ['cpu', 'cuda', 'cuda:0', 'cuda:1', ...] 依次为'cpu'中, 可见的第一个GPU中,可见的第一个GPU中,可见的第二个GPU中;
-
- 2. torch.device:将模型装载到torch.device上。
-
- 3. int: 将使用device_id为该值的gpu进行训练
-
- 4. list(int):如果多于1个device,将使用torch.nn.DataParallel包裹model, 并使用传入的device。
-
- 5. None. 为None则不对模型进行任何处理,如果传入的model为torch.nn.DataParallel该值必须为None。
-
- 如果模型是通过predict()进行预测的话,那么将不能使用多卡(DataParallel)进行验证,只会使用第一张卡上的模型。
- :param int verbose: 如果为0不输出任何信息; 如果为1,打印出验证结果。
- :param bool use_tqdm: 是否使用tqdm来显示测试进度; 如果为False,则不会显示任何内容。
- """
- super(Tester, self).__init__()
-
- if not isinstance(model, nn.Module):
- raise TypeError(f"The type of model must be `torch.nn.Module`, got `{type(model)}`.")
-
- self.metrics = _prepare_metrics(metrics)
-
- self.data = data
- self._model = _move_model_to_device(model, device=device)
- self.batch_size = batch_size
- self.verbose = verbose
- self.use_tqdm = use_tqdm
- self.logger = logger
-
- if isinstance(data, DataSet):
- self.data_iterator = DataSetIter(
- dataset=data, batch_size=batch_size, num_workers=num_workers, sampler=SequentialSampler())
- elif isinstance(data, BatchIter):
- self.data_iterator = data
- else:
- raise TypeError("data type {} not support".format(type(data)))
-
- # check predict
- if (hasattr(self._model, 'predict') and callable(self._model.predict)) or \
- (_model_contains_inner_module(self._model) and hasattr(self._model.module, 'predict') and
- callable(self._model.module.predict)):
- if isinstance(self._model, nn.DataParallel):
- self._predict_func_wrapper = partial(_data_parallel_wrapper('predict',
- self._model.device_ids,
- self._model.output_device),
- network=self._model.module)
- self._predict_func = self._model.module.predict # 用于匹配参数
- elif isinstance(self._model, nn.parallel.DistributedDataParallel):
- self._predict_func = self._model.module.predict
- self._predict_func_wrapper = self._model.module.predict # 用于调用
- else:
- self._predict_func = self._model.predict
- self._predict_func_wrapper = self._model.predict
- else:
- if _model_contains_inner_module(model):
- self._predict_func_wrapper = self._model.forward
- self._predict_func = self._model.module.forward
- else:
- self._predict_func = self._model.forward
- self._predict_func_wrapper = self._model.forward
-
- def test(self):
- r"""开始进行验证,并返回验证结果。
-
- :return Dict[Dict]: dict的二层嵌套结构,dict的第一层是metric的名称; 第二层是这个metric的指标。一个AccuracyMetric的例子为{'AccuracyMetric': {'acc': 1.0}}。
- """
- # turn on the testing mode; clean up the history
- self._model_device = _get_model_device(self._model)
- network = self._model
- self._mode(network, is_test=True)
- data_iterator = self.data_iterator
- eval_results = {}
- try:
- with torch.no_grad():
- if not self.use_tqdm:
- from .utils import _pseudo_tqdm as inner_tqdm
- else:
- inner_tqdm = tqdm
- with inner_tqdm(total=len(data_iterator), leave=False, dynamic_ncols=True) as pbar:
- pbar.set_description_str(desc="Test")
-
- start_time = time.time()
-
- for batch_x, batch_y in data_iterator:
- _move_dict_value_to_device(batch_x, batch_y, device=self._model_device)
- pred_dict = self._data_forward(self._predict_func, batch_x)
- if not isinstance(pred_dict, dict):
- raise TypeError(f"The return value of {_get_func_signature(self._predict_func)} "
- f"must be `dict`, got {type(pred_dict)}.")
- for metric in self.metrics:
- metric(pred_dict, batch_y)
-
- if self.use_tqdm:
- pbar.update()
-
- for metric in self.metrics:
- eval_result = metric.get_metric()
- if not isinstance(eval_result, dict):
- raise TypeError(f"The return value of {_get_func_signature(metric.get_metric)} must be "
- f"`dict`, got {type(eval_result)}")
- metric_name = metric.get_metric_name()
- eval_results[metric_name] = eval_result
- pbar.close()
- end_time = time.time()
- test_str = f'Evaluate data in {round(end_time - start_time, 2)} seconds!'
- if self.verbose >= 0:
- self.logger.info(test_str)
- except _CheckError as e:
- prev_func_signature = _get_func_signature(self._predict_func)
- _check_loss_evaluate(prev_func_signature=prev_func_signature, func_signature=e.func_signature,
- check_res=e.check_res, pred_dict=pred_dict, target_dict=batch_y,
- dataset=self.data, check_level=0)
-
- if self.verbose >= 1:
- logger.info("[tester] \n{}".format(self._format_eval_results(eval_results)))
- self._mode(network, is_test=False)
- return eval_results
-
- def _mode(self, model, is_test=False):
- """Train mode or Test mode. This is for PyTorch currently.
-
- :param model: a PyTorch model
- :param is_test: bool, whether in test mode or not.
-
- """
- if is_test:
- model.eval()
- else:
- model.train()
-
- def _data_forward(self, func, x):
- """A forward pass of the model. """
- x = _build_args(func, **x)
- y = self._predict_func_wrapper(**x)
- return y
-
- def _format_eval_results(self, results):
- """Override this method to support more print formats.
-
- :param results: dict, (str: float) is (metrics name: value)
-
- """
- _str = ''
- for metric_name, metric_result in results.items():
- _str += metric_name + ': '
- _str += ", ".join([str(key) + "=" + str(value) for key, value in metric_result.items()])
- _str += '\n'
- return _str[:-1]
|