|
- from torch import nn
- import torch
- import numpy as np
-
- class SemiCRFShiftRelay(nn.Module):
- """
- 该模块是一个decoder,但当前不支持含有tag的decode。
-
- """
- def __init__(self, L):
- """
-
- :param L: 不包含relay的长度
- """
- if L<2:
- raise RuntimeError()
- super().__init__()
- self.L = L
-
- def forward(self, logits, relay_logits, relay_target, relay_mask, end_seg_mask, seq_len):
- """
- relay node是接下来L个字都不是它的结束。relay的状态是往后滑动1个位置
-
- :param logits: batch_size x max_len x L, 当前位置往左边L个segment的分数,最后一维的0是长度为1的segment(即本身)
- :param relay_logits: batch_size x max_len, 当前位置是接下来L-1个位置都不是终点的分数
- :param relay_target: batch_size x max_len 每个位置他的segment在哪里开始的。如果超过L,则一直保持为L-1。比如长度为
- 5的词,L=3, [0, 1, 2, 2, 2]
- :param relay_mask: batch_size x max_len, 在需要relay的地方为1, 长度为5的词, L=3时,为[1, 1, 1, 0, 0]
- :param end_seg_mask: batch_size x max_len, segment结束的地方为1。
- :param seq_len: batch_size, 句子的长度
- :return: loss: batch_size,
- """
- batch_size, max_len, L = logits.size()
-
- # 当前时刻为relay node的分数是多少
- relay_scores = logits.new_zeros(batch_size, max_len)
- # 当前时刻结束的分数是多少
- scores = logits.new_zeros(batch_size, max_len+1)
- # golden的分数
- gold_scores = relay_logits[:, 0].masked_fill(relay_mask[:, 0].eq(0), 0) + \
- logits[:, 0, 0].masked_fill(end_seg_mask[:, 0].eq(0), 0)
- # 初始化
- scores[:, 1] = logits[:, 0, 0]
- batch_i = torch.arange(batch_size).to(logits.device).long()
- relay_scores[:, 0] = relay_logits[:, 0]
- last_relay_index = max_len - self.L
- for t in range(1, max_len):
- real_L = min(t+1, L)
- flip_logits_t = logits[:, t, :real_L].flip(dims=[1]) # flip之后低0个位置为real_L-1的segment
- # 计算relay_scores的更新
- if t<last_relay_index:
- # (1) 从正常位置跳转
- tmp1 = relay_logits[:, t] + scores[:, t] # batch_size
- # (2) 从relay跳转
- tmp2 = relay_logits[:, t] + relay_scores[:, t-1] # batch_size
- tmp1 = torch.stack([tmp1, tmp2], dim=0)
- relay_scores[:, t] = torch.logsumexp(tmp1, dim=0)
- # 计算scores的更新
- # (1)从之前的位置跳转过来的
- tmp1 = scores[:, t-real_L+1:t+1] + flip_logits_t # batch_size x L
- if t>self.L-1:
- # (2)从relay跳转过来的
- tmp2 = relay_scores[:, t-self.L] # batch_size
- tmp2 = tmp2 + flip_logits_t[:, 0] # batch_size
- tmp1 = torch.cat([tmp1, tmp2.unsqueeze(-1)], dim=-1)
- scores[:, t+1] = torch.logsumexp(tmp1, dim=-1) # 更新当前时刻的分数
-
- # 计算golden
- seg_i = relay_target[:, t] # batch_size
- gold_segment_scores = logits[:, t][(batch_i, seg_i)].masked_fill(end_seg_mask[:, t].eq(0), 0) # batch_size, 后向从0到L长度的segment的分数
- relay_score = relay_logits[:, t].masked_fill(relay_mask[:, t].eq(0), 0)
- gold_scores = gold_scores + relay_score + gold_segment_scores
- all_scores = scores.gather(dim=1, index=seq_len.unsqueeze(1)).squeeze(1) # batch_size
- return all_scores - gold_scores
-
- def predict(self, logits, relay_logits, seq_len):
- """
- relay node是接下来L个字都不是它的结束。relay的状态是往后滑动L-1个位置
-
- :param logits: batch_size x max_len x L, 当前位置左边L个segment的分数,最后一维的0是长度为1的segment(即本身)
- :param relay_logits: batch_size x max_len, 当前位置是接下来L-1个位置都不是终点的分数
- :param seq_len: batch_size, 句子的长度
- :return: pred: batch_size x max_len以该点开始的segment的(长度-1); pred_mask为1的地方预测有segment开始
- """
- batch_size, max_len, L = logits.size()
- # 当前时刻为relay node的分数是多少
- max_relay_scores = logits.new_zeros(batch_size, max_len)
- relay_bt = seq_len.new_zeros(batch_size, max_len) # 当前结果是否来自于relay的结果
- # 当前时刻结束的分数是多少
- max_scores = logits.new_zeros(batch_size, max_len+1)
- bt = seq_len.new_zeros(batch_size, max_len)
- # 初始化
- max_scores[:, 1] = logits[:, 0, 0]
- max_relay_scores[:, 0] = relay_logits[:, 0]
- last_relay_index = max_len - self.L
- for t in range(1, max_len):
- real_L = min(t+1, L)
- flip_logits_t = logits[:, t, :real_L].flip(dims=[1]) # flip之后低0个位置为real_L-1的segment
- # 计算relay_scores的更新
- if t<last_relay_index:
- # (1) 从正常位置跳转
- tmp1 = relay_logits[:, t] + max_scores[:, t]
- # (2) 从relay跳转
- tmp2 = relay_logits[:, t] + max_relay_scores[:, t-1] # batch_size
- # 每个sample的倒数L位不能是relay了
- tmp2 = tmp2.masked_fill(seq_len.le(t+L), float('-inf'))
- mask_i = tmp1.lt(tmp2) # 为1的位置为relay跳转
- relay_bt[:, t].masked_fill_(mask_i, 1)
- max_relay_scores[:, t] = torch.max(tmp1, tmp2)
-
- # 计算scores的更新
- # (1)从之前的位置跳转过来的
- tmp1 = max_scores[:, t-real_L+1:t+1] + flip_logits_t # batch_size x L
- tmp1 = tmp1.flip(dims=[1]) # 0的位置代表长度为1的segment
- if self.L-1<t:
- # (2)从relay跳转过来的
- tmp2 = max_relay_scores[:, t-self.L] # batch_size
- tmp2 = tmp2 + flip_logits_t[:, 0]
- tmp1 = torch.cat([tmp1, tmp2.unsqueeze(-1)], dim=-1)
- # 看哪个更大
- max_score, pt = torch.max(tmp1, dim=1)
- max_scores[:, t+1] = max_score
- # mask_i = pt.ge(self.L)
- bt[:, t] = pt # 假设L=3, 那么对于0,1,2,3分别代表的是[t, t], [t-1, t], [t-2, t], [t-self.L(relay), t]
- # 需要把结果decode出来
- pred = np.zeros((batch_size, max_len), dtype=int)
- pred_mask = np.zeros((batch_size, max_len), dtype=int)
- seq_len = seq_len.tolist()
- bt = bt.tolist()
- relay_bt = relay_bt.tolist()
- for b in range(batch_size):
- seq_len_i = seq_len[b]
- bt_i = bt[b][:seq_len_i]
- relay_bt_i = relay_bt[b][:seq_len_i]
- j = seq_len_i - 1
- assert relay_bt_i[j]!=1
- while j>-1:
- if bt_i[j]==self.L:
- seg_start_pos = j
- j = j-self.L
- while relay_bt_i[j]!=0 and j>-1:
- j = j - 1
- pred[b, j] = seg_start_pos - j
- pred_mask[b, j] = 1
- else:
- length = bt_i[j]
- j = j - bt_i[j]
- pred_mask[b, j] = 1
- pred[b, j] = length
- j = j - 1
-
- return torch.LongTensor(pred).to(logits.device), torch.LongTensor(pred_mask).to(logits.device)
-
-
-
- class FeatureFunMax(nn.Module):
- def __init__(self, hidden_size:int, L:int):
- """
- 用于计算semi-CRF特征的函数。给定batch_size x max_len x hidden_size形状的输入,输出为batch_size x max_len x L的
- 分数,以及batch_size x max_len的relay的分数。两者的区别参考论文 TODO 补充
-
- :param hidden_size: 输入特征的维度大小
- :param L: 不包含relay node的segment的长度大小。
- """
- super().__init__()
-
- self.end_fc = nn.Linear(hidden_size, 1, bias=False)
- self.whole_w = nn.Parameter(torch.randn(L, hidden_size))
- self.relay_fc = nn.Linear(hidden_size, 1)
- self.length_bias = nn.Parameter(torch.randn(L))
- self.L = L
- def forward(self, logits):
- """
-
- :param logits: batch_size x max_len x hidden_size
- :return: batch_size x max_len x L # 最后一维为左边segment的分数,0处为长度为1的segment
- batch_size x max_len, # 当前位置是接下来L-1个位置都不是终点的分数
-
- """
- batch_size, max_len, hidden_size = logits.size()
- # start_scores = self.start_fc(logits) # batch_size x max_len x 1 # 每个位置作为start的分数
- tmp = logits.new_zeros(batch_size, max_len+self.L-1, hidden_size)
- tmp[:, -max_len:] = logits
- # batch_size x max_len x hidden_size x (self.L) -> batch_size x max_len x (self.L) x hidden_size
- start_logits = tmp.unfold(dimension=1, size=self.L, step=1).transpose(2, 3).flip(dims=[2])
- end_scores = self.end_fc(logits) # batch_size x max_len x 1
- # 计算relay的特征
- relay_tmp = logits.new_zeros(batch_size, max_len, hidden_size)
- relay_tmp[:, :-self.L] = logits[:, self.L:]
- # batch_size x max_len x hidden_size
- relay_logits_max = torch.max(relay_tmp, logits) # end - start
- logits_max = torch.max(logits.unsqueeze(2), start_logits) # batch_size x max_len x L x hidden_size
- whole_scores = (logits_max*self.whole_w).sum(dim=-1) # batch_size x max_len x self.L
- # whole_scores = self.whole_fc().squeeze(-1) # bz x max_len x self.L
- # batch_size x max_len
- relay_scores = self.relay_fc(relay_logits_max).squeeze(-1)
- return whole_scores+end_scores+self.length_bias.view(1, 1, -1), relay_scores
|