|
- """
- bert.py is modified from huggingface/pytorch-pretrained-BERT, which is licensed under the Apache License 2.0.
-
- """
- import copy
- import json
- import math
- import os
-
- import torch
- from torch import nn
-
- CONFIG_FILE = 'bert_config.json'
- MODEL_WEIGHTS = 'pytorch_model.bin'
-
-
- def gelu(x):
- return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
-
-
- def swish(x):
- return x * torch.sigmoid(x)
-
-
- ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
-
-
- class BertLayerNorm(nn.Module):
- def __init__(self, hidden_size, eps=1e-12):
- super(BertLayerNorm, self).__init__()
- self.weight = nn.Parameter(torch.ones(hidden_size))
- self.bias = nn.Parameter(torch.zeros(hidden_size))
- self.variance_epsilon = eps
-
- def forward(self, x):
- u = x.mean(-1, keepdim=True)
- s = (x - u).pow(2).mean(-1, keepdim=True)
- x = (x - u) / torch.sqrt(s + self.variance_epsilon)
- return self.weight * x + self.bias
-
-
- class BertEmbeddings(nn.Module):
- def __init__(self, vocab_size, hidden_size, max_position_embeddings, type_vocab_size, hidden_dropout_prob):
- super(BertEmbeddings, self).__init__()
- self.word_embeddings = nn.Embedding(vocab_size, hidden_size)
- self.position_embeddings = nn.Embedding(max_position_embeddings, hidden_size)
- self.token_type_embeddings = nn.Embedding(type_vocab_size, hidden_size)
-
- # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
- # any TensorFlow checkpoint file
- self.LayerNorm = BertLayerNorm(hidden_size, eps=1e-12)
- self.dropout = nn.Dropout(hidden_dropout_prob)
-
- def forward(self, input_ids, token_type_ids=None):
- seq_length = input_ids.size(1)
- position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
- position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
- if token_type_ids is None:
- token_type_ids = torch.zeros_like(input_ids)
-
- words_embeddings = self.word_embeddings(input_ids)
- position_embeddings = self.position_embeddings(position_ids)
- token_type_embeddings = self.token_type_embeddings(token_type_ids)
-
- embeddings = words_embeddings + position_embeddings + token_type_embeddings
- embeddings = self.LayerNorm(embeddings)
- embeddings = self.dropout(embeddings)
- return embeddings
-
-
- class BertSelfAttention(nn.Module):
- def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob):
- super(BertSelfAttention, self).__init__()
- if hidden_size % num_attention_heads != 0:
- raise ValueError(
- "The hidden size (%d) is not a multiple of the number of attention "
- "heads (%d)" % (hidden_size, num_attention_heads))
- self.num_attention_heads = num_attention_heads
- self.attention_head_size = int(hidden_size / num_attention_heads)
- self.all_head_size = self.num_attention_heads * self.attention_head_size
-
- self.query = nn.Linear(hidden_size, self.all_head_size)
- self.key = nn.Linear(hidden_size, self.all_head_size)
- self.value = nn.Linear(hidden_size, self.all_head_size)
-
- self.dropout = nn.Dropout(attention_probs_dropout_prob)
-
- def transpose_for_scores(self, x):
- new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
- x = x.view(*new_x_shape)
- return x.permute(0, 2, 1, 3)
-
- def forward(self, hidden_states, attention_mask):
- mixed_query_layer = self.query(hidden_states)
- mixed_key_layer = self.key(hidden_states)
- mixed_value_layer = self.value(hidden_states)
-
- query_layer = self.transpose_for_scores(mixed_query_layer)
- key_layer = self.transpose_for_scores(mixed_key_layer)
- value_layer = self.transpose_for_scores(mixed_value_layer)
-
- # Take the dot product between "query" and "key" to get the raw attention scores.
- attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
- attention_scores = attention_scores / math.sqrt(self.attention_head_size)
- # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
- attention_scores = attention_scores + attention_mask
-
- # Normalize the attention scores to probabilities.
- attention_probs = nn.Softmax(dim=-1)(attention_scores)
-
- # This is actually dropping out entire tokens to attend to, which might
- # seem a bit unusual, but is taken from the original Transformer paper.
- attention_probs = self.dropout(attention_probs)
-
- context_layer = torch.matmul(attention_probs, value_layer)
- context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
- new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
- context_layer = context_layer.view(*new_context_layer_shape)
- return context_layer
-
-
- class BertSelfOutput(nn.Module):
- def __init__(self, hidden_size, hidden_dropout_prob):
- super(BertSelfOutput, self).__init__()
- self.dense = nn.Linear(hidden_size, hidden_size)
- self.LayerNorm = BertLayerNorm(hidden_size, eps=1e-12)
- self.dropout = nn.Dropout(hidden_dropout_prob)
-
- def forward(self, hidden_states, input_tensor):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
-
-
- class BertAttention(nn.Module):
- def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob):
- super(BertAttention, self).__init__()
- self.self = BertSelfAttention(hidden_size, num_attention_heads, attention_probs_dropout_prob)
- self.output = BertSelfOutput(hidden_size, hidden_dropout_prob)
-
- def forward(self, input_tensor, attention_mask):
- self_output = self.self(input_tensor, attention_mask)
- attention_output = self.output(self_output, input_tensor)
- return attention_output
-
-
- class BertIntermediate(nn.Module):
- def __init__(self, hidden_size, intermediate_size, hidden_act):
- super(BertIntermediate, self).__init__()
- self.dense = nn.Linear(hidden_size, intermediate_size)
- self.intermediate_act_fn = ACT2FN[hidden_act] \
- if isinstance(hidden_act, str) else hidden_act
-
- def forward(self, hidden_states):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.intermediate_act_fn(hidden_states)
- return hidden_states
-
-
- class BertOutput(nn.Module):
- def __init__(self, hidden_size, intermediate_size, hidden_dropout_prob):
- super(BertOutput, self).__init__()
- self.dense = nn.Linear(intermediate_size, hidden_size)
- self.LayerNorm = BertLayerNorm(hidden_size, eps=1e-12)
- self.dropout = nn.Dropout(hidden_dropout_prob)
-
- def forward(self, hidden_states, input_tensor):
- hidden_states = self.dense(hidden_states)
- hidden_states = self.dropout(hidden_states)
- hidden_states = self.LayerNorm(hidden_states + input_tensor)
- return hidden_states
-
-
- class BertLayer(nn.Module):
- def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob,
- intermediate_size, hidden_act):
- super(BertLayer, self).__init__()
- self.attention = BertAttention(hidden_size, num_attention_heads, attention_probs_dropout_prob,
- hidden_dropout_prob)
- self.intermediate = BertIntermediate(hidden_size, intermediate_size, hidden_act)
- self.output = BertOutput(hidden_size, intermediate_size, hidden_dropout_prob)
-
- def forward(self, hidden_states, attention_mask):
- attention_output = self.attention(hidden_states, attention_mask)
- intermediate_output = self.intermediate(attention_output)
- layer_output = self.output(intermediate_output, attention_output)
- return layer_output
-
-
- class BertEncoder(nn.Module):
- def __init__(self, num_hidden_layers, hidden_size, num_attention_heads, attention_probs_dropout_prob,
- hidden_dropout_prob,
- intermediate_size, hidden_act):
- super(BertEncoder, self).__init__()
- layer = BertLayer(hidden_size, num_attention_heads, attention_probs_dropout_prob, hidden_dropout_prob,
- intermediate_size, hidden_act)
- self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(num_hidden_layers)])
-
- def forward(self, hidden_states, attention_mask, output_all_encoded_layers=True):
- all_encoder_layers = []
- for layer_module in self.layer:
- hidden_states = layer_module(hidden_states, attention_mask)
- if output_all_encoded_layers:
- all_encoder_layers.append(hidden_states)
- if not output_all_encoded_layers:
- all_encoder_layers.append(hidden_states)
- return all_encoder_layers
-
-
- class BertPooler(nn.Module):
- def __init__(self, hidden_size):
- super(BertPooler, self).__init__()
- self.dense = nn.Linear(hidden_size, hidden_size)
- self.activation = nn.Tanh()
-
- def forward(self, hidden_states):
- # We "pool" the model by simply taking the hidden state corresponding
- # to the first token.
- first_token_tensor = hidden_states[:, 0]
- pooled_output = self.dense(first_token_tensor)
- pooled_output = self.activation(pooled_output)
- return pooled_output
-
-
- class BertModel(nn.Module):
- """Bidirectional Embedding Representations from Transformers.
-
- If you want to use pre-trained weights, please download from the following sources provided by pytorch-pretrained-BERT.
- sources::
-
- 'bert-base-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased.tar.gz",
- 'bert-large-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased.tar.gz",
- 'bert-base-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased.tar.gz",
- 'bert-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased.tar.gz",
- 'bert-base-multilingual-uncased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased.tar.gz",
- 'bert-base-multilingual-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased.tar.gz",
- 'bert-base-chinese': "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese.tar.gz",
-
-
- Construct a BERT model with pre-trained weights::
-
- model = BertModel.from_pretrained("path/to/weights/directory")
-
- """
-
- def __init__(self, vocab_size,
- hidden_size=768,
- num_hidden_layers=12,
- num_attention_heads=12,
- intermediate_size=3072,
- hidden_act="gelu",
- hidden_dropout_prob=0.1,
- attention_probs_dropout_prob=0.1,
- max_position_embeddings=512,
- type_vocab_size=2,
- initializer_range=0.02, **kwargs):
- super(BertModel, self).__init__()
- self.embeddings = BertEmbeddings(vocab_size, hidden_size, max_position_embeddings,
- type_vocab_size, hidden_dropout_prob)
- self.encoder = BertEncoder(num_hidden_layers, hidden_size, num_attention_heads,
- attention_probs_dropout_prob, hidden_dropout_prob, intermediate_size,
- hidden_act)
- self.pooler = BertPooler(hidden_size)
- self.initializer_range = initializer_range
-
- self.apply(self.init_bert_weights)
-
- def init_bert_weights(self, module):
- if isinstance(module, (nn.Linear, nn.Embedding)):
- # Slightly different from the TF version which uses truncated_normal for initialization
- # cf https://github.com/pytorch/pytorch/pull/5617
- module.weight.data.normal_(mean=0.0, std=self.initializer_range)
- elif isinstance(module, BertLayerNorm):
- module.bias.data.zero_()
- module.weight.data.fill_(1.0)
- if isinstance(module, nn.Linear) and module.bias is not None:
- module.bias.data.zero_()
-
- def forward(self, input_ids, token_type_ids=None, attention_mask=None, output_all_encoded_layers=True):
- if attention_mask is None:
- attention_mask = torch.ones_like(input_ids)
- if token_type_ids is None:
- token_type_ids = torch.zeros_like(input_ids)
-
- # We create a 3D attention mask from a 2D tensor mask.
- # Sizes are [batch_size, 1, 1, to_seq_length]
- # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
- # this attention mask is more simple than the triangular masking of causal attention
- # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
- extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
-
- # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
- # masked positions, this operation will create a tensor which is 0.0 for
- # positions we want to attend and -10000.0 for masked positions.
- # Since we are adding it to the raw scores before the softmax, this is
- # effectively the same as removing these entirely.
- extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
- extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
-
- embedding_output = self.embeddings(input_ids, token_type_ids)
- encoded_layers = self.encoder(embedding_output,
- extended_attention_mask,
- output_all_encoded_layers=output_all_encoded_layers)
- sequence_output = encoded_layers[-1]
- pooled_output = self.pooler(sequence_output)
- if not output_all_encoded_layers:
- encoded_layers = encoded_layers[-1]
- return encoded_layers, pooled_output
-
- @classmethod
- def from_pretrained(cls, pretrained_model_dir, state_dict=None, *inputs, **kwargs):
- # Load config
- config_file = os.path.join(pretrained_model_dir, CONFIG_FILE)
- config = json.load(open(config_file, "r"))
- # config = BertConfig.from_json_file(config_file)
- # logger.info("Model config {}".format(config))
- # Instantiate model.
- model = cls(*inputs, **config, **kwargs)
- if state_dict is None:
- weights_path = os.path.join(pretrained_model_dir, MODEL_WEIGHTS)
- state_dict = torch.load(weights_path)
-
- old_keys = []
- new_keys = []
- for key in state_dict.keys():
- new_key = None
- if 'gamma' in key:
- new_key = key.replace('gamma', 'weight')
- if 'beta' in key:
- new_key = key.replace('beta', 'bias')
- if new_key:
- old_keys.append(key)
- new_keys.append(new_key)
- for old_key, new_key in zip(old_keys, new_keys):
- state_dict[new_key] = state_dict.pop(old_key)
-
- missing_keys = []
- unexpected_keys = []
- error_msgs = []
- # copy state_dict so _load_from_state_dict can modify it
- metadata = getattr(state_dict, '_metadata', None)
- state_dict = state_dict.copy()
- if metadata is not None:
- state_dict._metadata = metadata
-
- def load(module, prefix=''):
- local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {})
- module._load_from_state_dict(
- state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs)
- for name, child in module._modules.items():
- if child is not None:
- load(child, prefix + name + '.')
-
- load(model, prefix='' if hasattr(model, 'bert') else 'bert.')
- if len(missing_keys) > 0:
- print("Weights of {} not initialized from pretrained model: {}".format(
- model.__class__.__name__, missing_keys))
- if len(unexpected_keys) > 0:
- print("Weights from pretrained model not used in {}: {}".format(
- model.__class__.__name__, unexpected_keys))
- return model
|