|
- from utils_ import get_skip_path_trivial, Trie, get_skip_path
- from load_data import load_yangjie_rich_pretrain_word_list, load_ontonotes4ner, equip_chinese_ner_with_skip
- from pathes import *
- from functools import partial
- from fastNLP import cache_results
- from fastNLP.embeddings.static_embedding import StaticEmbedding
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from fastNLP.core.metrics import _bmes_tag_to_spans,_bmeso_tag_to_spans
- from load_data import load_resume_ner
-
-
- # embed = StaticEmbedding(None,embedding_dim=2)
- # datasets,vocabs,embeddings = load_ontonotes4ner(ontonote4ner_cn_path,yangjie_rich_pretrain_unigram_path,yangjie_rich_pretrain_bigram_path,
- # _refresh=True,index_token=False)
- #
- # w_list = load_yangjie_rich_pretrain_word_list(yangjie_rich_pretrain_word_path,
- # _refresh=False)
- #
- # datasets,vocabs,embeddings = equip_chinese_ner_with_skip(datasets,vocabs,embeddings,w_list,yangjie_rich_pretrain_word_path,
- # _refresh=True)
- #
-
- def reverse_style(input_string):
- target_position = input_string.index('[')
- input_len = len(input_string)
- output_string = input_string[target_position:input_len] + input_string[0:target_position]
- # print('in:{}.out:{}'.format(input_string, output_string))
- return output_string
-
-
-
-
-
- def get_yangjie_bmeso(label_list):
- def get_ner_BMESO_yj(label_list):
- # list_len = len(word_list)
- # assert(list_len == len(label_list)), "word list size unmatch with label list"
- list_len = len(label_list)
- begin_label = 'b-'
- end_label = 'e-'
- single_label = 's-'
- whole_tag = ''
- index_tag = ''
- tag_list = []
- stand_matrix = []
- for i in range(0, list_len):
- # wordlabel = word_list[i]
- current_label = label_list[i].lower()
- if begin_label in current_label:
- if index_tag != '':
- tag_list.append(whole_tag + ',' + str(i - 1))
- whole_tag = current_label.replace(begin_label, "", 1) + '[' + str(i)
- index_tag = current_label.replace(begin_label, "", 1)
-
- elif single_label in current_label:
- if index_tag != '':
- tag_list.append(whole_tag + ',' + str(i - 1))
- whole_tag = current_label.replace(single_label, "", 1) + '[' + str(i)
- tag_list.append(whole_tag)
- whole_tag = ""
- index_tag = ""
- elif end_label in current_label:
- if index_tag != '':
- tag_list.append(whole_tag + ',' + str(i))
- whole_tag = ''
- index_tag = ''
- else:
- continue
- if (whole_tag != '') & (index_tag != ''):
- tag_list.append(whole_tag)
- tag_list_len = len(tag_list)
-
- for i in range(0, tag_list_len):
- if len(tag_list[i]) > 0:
- tag_list[i] = tag_list[i] + ']'
- insert_list = reverse_style(tag_list[i])
- stand_matrix.append(insert_list)
- # print stand_matrix
- return stand_matrix
-
- def transform_YJ_to_fastNLP(span):
- span = span[1:]
- span_split = span.split(']')
- # print('span_list:{}'.format(span_split))
- span_type = span_split[1]
- # print('span_split[0].split(','):{}'.format(span_split[0].split(',')))
- if ',' in span_split[0]:
- b, e = span_split[0].split(',')
- else:
- b = span_split[0]
- e = b
-
- b = int(b)
- e = int(e)
-
- e += 1
-
- return (span_type, (b, e))
- yj_form = get_ner_BMESO_yj(label_list)
- # print('label_list:{}'.format(label_list))
- # print('yj_from:{}'.format(yj_form))
- fastNLP_form = list(map(transform_YJ_to_fastNLP,yj_form))
- return fastNLP_form
-
-
- # tag_list = ['O', 'B-singer', 'M-singer', 'E-singer', 'O', 'O']
- # span_list = get_ner_BMES(tag_list)
- # print(span_list)
- # yangjie_label_list = ['B-NAME', 'E-NAME', 'O', 'B-CONT', 'M-CONT', 'E-CONT', 'B-RACE', 'E-RACE', 'B-TITLE', 'M-TITLE', 'E-TITLE', 'B-EDU', 'M-EDU', 'E-EDU', 'B-ORG', 'M-ORG', 'E-ORG', 'M-NAME', 'B-PRO', 'M-PRO', 'E-PRO', 'S-RACE', 'S-NAME', 'B-LOC', 'M-LOC', 'E-LOC', 'M-RACE', 'S-ORG']
- # my_label_list = ['O', 'M-ORG', 'M-TITLE', 'B-TITLE', 'E-TITLE', 'B-ORG', 'E-ORG', 'M-EDU', 'B-NAME', 'E-NAME', 'B-EDU', 'E-EDU', 'M-NAME', 'M-PRO', 'M-CONT', 'B-PRO', 'E-PRO', 'B-CONT', 'E-CONT', 'M-LOC', 'B-RACE', 'E-RACE', 'S-NAME', 'B-LOC', 'E-LOC', 'M-RACE', 'S-RACE', 'S-ORG']
- # yangjie_label = set(yangjie_label_list)
- # my_label = set(my_label_list)
-
- a = torch.tensor([0,2,0,3])
- b = (a==0)
- print(b)
- print(b.float())
- from fastNLP import RandomSampler
-
- # f = open('/remote-home/xnli/weight_debug/lattice_yangjie.pkl','rb')
- # weight_dict = torch.load(f)
- # print(weight_dict.keys())
- # for k,v in weight_dict.items():
- # print("{}:{}".format(k,v.size()))
|