|
- import numpy as np
-
- from fastNLP import Vocabulary
- from fastNLP.io import EmbedLoader
-
-
- class TestEmbedLoader:
- def test_load_with_vocab(self):
- vocab = Vocabulary()
- glove = "tests/data_for_tests/embedding/small_static_embedding/glove.6B.50d_test.txt"
- word2vec = "tests/data_for_tests/embedding/small_static_embedding/word2vec_test.txt"
- vocab.add_word('the')
- vocab.add_word('none')
- g_m = EmbedLoader.load_with_vocab(glove, vocab)
- assert(g_m.shape == (4, 50))
- w_m = EmbedLoader.load_with_vocab(word2vec, vocab, normalize=True)
- assert(w_m.shape ==(4, 50))
- assert np.allclose(np.linalg.norm(w_m, axis=1).sum(), 4)
-
- def test_load_without_vocab(self):
- words = ['the', 'of', 'in', 'a', 'to', 'and']
- glove = "tests/data_for_tests/embedding/small_static_embedding/glove.6B.50d_test.txt"
- word2vec = "tests/data_for_tests/embedding/small_static_embedding/word2vec_test.txt"
- g_m, vocab = EmbedLoader.load_without_vocab(glove)
- assert(g_m.shape == (8, 50))
- for word in words:
- assert(word in vocab)
- w_m, vocab = EmbedLoader.load_without_vocab(word2vec, normalize=True)
- assert(w_m.shape== (8, 50))
- assert np.allclose(np.linalg.norm(w_m, axis=1).sum(), 8)
- for word in words:
- assert(word in vocab)
- # no unk
- w_m, vocab = EmbedLoader.load_without_vocab(word2vec, normalize=True, unknown=None)
- assert(w_m.shape == (7, 50))
- assert np.allclose(np.linalg.norm(w_m, axis=1).sum(), 7)
- for word in words:
- assert(word in vocab)
|