|
-
- import random
- import numpy as np
- import torch
- from torch.optim import Adamax
- from torch.optim.lr_scheduler import StepLR
-
- from fastNLP.core import Trainer, Tester, AccuracyMetric, Const
- from fastNLP.core.callback import GradientClipCallback, LRScheduler, EvaluateCallback
- from fastNLP.core.losses import CrossEntropyLoss
- from fastNLP.embeddings import StaticEmbedding
- from fastNLP.embeddings import ElmoEmbedding
- from fastNLP.io.pipe.matching import SNLIPipe, RTEPipe, MNLIPipe, QNLIPipe, QuoraPipe
- from fastNLP.models.snli import ESIM
-
-
- # define hyper-parameters
- class ESIMConfig:
-
- task = 'snli'
-
- embedding = 'glove'
-
- batch_size_per_gpu = 196
- n_epochs = 30
- lr = 2e-3
- seed = 42
- save_path = None # 模型存储的位置,None表示不存储模型。
-
- train_dataset_name = 'train'
- dev_dataset_name = 'dev'
- test_dataset_name = 'test'
-
- to_lower = True # 忽略大小写
- tokenizer = 'spacy' # 使用spacy进行分词
-
-
- arg = ESIMConfig()
-
- # set random seed
- random.seed(arg.seed)
- np.random.seed(arg.seed)
- torch.manual_seed(arg.seed)
-
- n_gpu = torch.cuda.device_count()
- if n_gpu > 0:
- torch.cuda.manual_seed_all(arg.seed)
-
- # load data set
- if arg.task == 'snli':
- data_bundle = SNLIPipe(lower=arg.to_lower, tokenizer=arg.tokenizer).process_from_file()
- elif arg.task == 'rte':
- data_bundle = RTEPipe(lower=arg.to_lower, tokenizer=arg.tokenizer).process_from_file()
- elif arg.task == 'qnli':
- data_bundle = QNLIPipe(lower=arg.to_lower, tokenizer=arg.tokenizer).process_from_file()
- elif arg.task == 'mnli':
- data_bundle = MNLIPipe(lower=arg.to_lower, tokenizer=arg.tokenizer).process_from_file()
- elif arg.task == 'quora':
- data_bundle = QuoraPipe(lower=arg.to_lower, tokenizer=arg.tokenizer).process_from_file()
- else:
- raise RuntimeError(f'NOT support {arg.task} task yet!')
-
- print(data_bundle) # print details in data_bundle
-
- # load embedding
- if arg.embedding == 'elmo':
- embedding = ElmoEmbedding(data_bundle.vocabs[Const.INPUTS(0)], model_dir_or_name='en-medium',
- requires_grad=True)
- elif arg.embedding == 'glove':
- embedding = StaticEmbedding(data_bundle.vocabs[Const.INPUTS(0)], model_dir_or_name='en-glove-840b-300d',
- requires_grad=True, normalize=False)
- else:
- raise RuntimeError(f'NOT support {arg.embedding} embedding yet!')
-
- # define model
- model = ESIM(embedding, num_labels=len(data_bundle.vocabs[Const.TARGET]))
-
- # define optimizer and callback
- optimizer = Adamax(lr=arg.lr, params=model.parameters())
- scheduler = StepLR(optimizer, step_size=10, gamma=0.5) # 每10个epoch学习率变为原来的0.5倍
-
- callbacks = [
- GradientClipCallback(clip_value=10), # 等价于torch.nn.utils.clip_grad_norm_(10)
- LRScheduler(scheduler),
- ]
-
- if arg.task in ['snli']:
- callbacks.append(EvaluateCallback(data=data_bundle.datasets[arg.test_dataset_name]))
- # evaluate test set in every epoch if task is snli.
-
- # define trainer
- trainer = Trainer(train_data=data_bundle.datasets[arg.train_dataset_name], model=model,
- optimizer=optimizer,
- loss=CrossEntropyLoss(),
- batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu,
- n_epochs=arg.n_epochs, print_every=-1,
- dev_data=data_bundle.datasets[arg.dev_dataset_name],
- metrics=AccuracyMetric(), metric_key='acc',
- device=[i for i in range(torch.cuda.device_count())],
- check_code_level=-1,
- save_path=arg.save_path,
- callbacks=callbacks)
-
- # train model
- trainer.train(load_best_model=True)
-
- # define tester
- tester = Tester(
- data=data_bundle.datasets[arg.test_dataset_name],
- model=model,
- metrics=AccuracyMetric(),
- batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu,
- device=[i for i in range(torch.cuda.device_count())],
- )
-
- # test model
- tester.test()
-
|