|
- import hashlib
- import os
- import re
- import shutil
- import sys
- import tempfile
-
- import torch
-
- try:
- from requests.utils import urlparse
- from requests import get as urlopen
- requests_available = True
- except ImportError:
- requests_available = False
- if sys.version_info[0] == 2:
- from urlparse import urlparse # noqa f811
- from urllib2 import urlopen # noqa f811
- else:
- from urllib.request import urlopen
- from urllib.parse import urlparse
- try:
- from tqdm.auto import tqdm
- except:
- from fastNLP.core.utils import _pseudo_tqdm as tqdm
-
- # matches bfd8deac from resnet18-bfd8deac.pth
- HASH_REGEX = re.compile(r'-([a-f0-9]*)\.')
-
-
- def load_url(url, model_dir=None, map_location=None, progress=True):
- r"""Loads the Torch serialized object at the given URL.
-
- If the object is already present in `model_dir`, it's deserialized and
- returned. The filename part of the URL should follow the naming convention
- ``filename-<sha256>.ext`` where ``<sha256>`` is the first eight or more
- digits of the SHA256 hash of the contents of the file. The hash is used to
- ensure unique names and to verify the contents of the file.
-
- The default value of `model_dir` is ``$TORCH_HOME/models`` where
- ``$TORCH_HOME`` defaults to ``~/.torch``. The default directory can be
- overridden with the ``$TORCH_MODEL_ZOO`` environment variable.
-
- Args:
- url (string): URL of the object to download
- model_dir (string, optional): directory in which to save the object
- map_location (optional): a function or a dict specifying how to remap storage locations (see torch.load)
- progress (bool, optional): whether or not to display a progress bar to stderr
-
- Example:
- # >>> state_dict = model_zoo.load_url('https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth')
-
- """
- if model_dir is None:
- torch_home = os.path.expanduser(os.getenv('fastNLP_HOME', '~/.fastNLP'))
- model_dir = os.getenv('fastNLP_MODEL_ZOO', os.path.join(torch_home, 'models'))
- if not os.path.exists(model_dir):
- os.makedirs(model_dir)
- parts = urlparse(url)
- filename = os.path.basename(parts.path)
- cached_file = os.path.join(model_dir, filename)
- if not os.path.exists(cached_file):
- sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
- # hash_prefix = HASH_REGEX.search(filename).group(1)
- _download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
- return torch.load(cached_file, map_location=map_location)
-
-
- def _download_url_to_file(url, dst, hash_prefix, progress):
- if requests_available:
- u = urlopen(url, stream=True)
- file_size = int(u.headers["Content-Length"])
- u = u.raw
- else:
- u = urlopen(url)
- meta = u.info()
- if hasattr(meta, 'getheaders'):
- file_size = int(meta.getheaders("Content-Length")[0])
- else:
- file_size = int(meta.get_all("Content-Length")[0])
-
- f = tempfile.NamedTemporaryFile(delete=False)
- try:
- if hash_prefix is not None:
- sha256 = hashlib.sha256()
- with tqdm(total=file_size, disable=not progress) as pbar:
- while True:
- buffer = u.read(8192)
- if len(buffer) == 0:
- break
- f.write(buffer)
- if hash_prefix is not None:
- sha256.update(buffer)
- pbar.update(len(buffer))
-
- f.close()
- if hash_prefix is not None:
- digest = sha256.hexdigest()
- if digest[:len(hash_prefix)] != hash_prefix:
- raise RuntimeError('invalid hash value (expected "{}", got "{}")'
- .format(hash_prefix, digest))
- shutil.move(f.name, dst)
- finally:
- f.close()
- if os.path.exists(f.name):
- os.remove(f.name)
-
-
- if tqdm is None:
- # fake tqdm if it's not installed
- class tqdm(object):
-
- def __init__(self, total, disable=False):
- self.total = total
- self.disable = disable
- self.n = 0
-
- def update(self, n):
- if self.disable:
- return
-
- self.n += n
- sys.stderr.write("\r{0:.1f}%".format(100 * self.n / float(self.total)))
- sys.stderr.flush()
-
- def __enter__(self):
- return self
-
- def __exit__(self, exc_type, exc_val, exc_tb):
- if self.disable:
- return
-
- sys.stderr.write('\n')
|