|
- # python: 3.6
- # encoding: utf-8
-
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
-
-
- class MaxPool(nn.Module):
- """1-d max-pooling module."""
-
- def __init__(self, stride=None, padding=0, dilation=1):
- super(MaxPool, self).__init__()
- self.stride = stride
- self.padding = padding
- self.dilation = dilation
-
- def forward(self, x):
- x = torch.transpose(x, 1, 2) # [N,L,C] -> [N,C,L]
- kernel_size = x.size(2)
- x = F.max_pool1d( # [N,L,C] -> [N,C,1]
- input=x,
- kernel_size=kernel_size,
- stride=self.stride,
- padding=self.padding,
- dilation=self.dilation)
- return x.squeeze(dim=-1) # [N,C,1] -> [N,C]
-
-
- class MaxPoolWithMask(nn.Module):
- def __init__(self):
- super(MaxPoolWithMask, self).__init__()
- self.inf = 10e12
-
- def forward(self, tensor, mask, dim=0):
- masks = mask.view(mask.size(0), mask.size(1), -1)
- masks = masks.expand(-1, -1, tensor.size(2)).float()
- return torch.max(tensor + masks.le(0.5).float() * -self.inf, dim=dim)
|