|
- import os
- import sys
-
- sys.path.append(os.path.join(os.path.dirname(__file__), '../..'))
-
- import fastNLP
-
- from fastNLP.core.trainer import Trainer
- from fastNLP.core.instance import Instance
- from fastNLP.api.pipeline import Pipeline
- from fastNLP.models.biaffine_parser import BiaffineParser, ParserMetric, ParserLoss
- from fastNLP.core.tester import Tester
- from fastNLP.io.config_io import ConfigLoader, ConfigSection
- from fastNLP.io.model_io import ModelLoader
- from fastNLP.io.dataset_loader import ConllxDataLoader
- from fastNLP.api.processor import *
- from fastNLP.io.embed_loader import EmbedLoader
- from fastNLP.core.callback import Callback
-
- BOS = '<BOS>'
- EOS = '<EOS>'
- UNK = '<UNK>'
- PAD = '<PAD>'
- NUM = '<NUM>'
- ENG = '<ENG>'
-
- # not in the file's dir
- if len(os.path.dirname(__file__)) != 0:
- os.chdir(os.path.dirname(__file__))
-
- def convert(data):
- dataset = DataSet()
- for sample in data:
- word_seq = [BOS] + sample['words']
- pos_seq = [BOS] + sample['pos_tags']
- heads = [0] + sample['heads']
- head_tags = [BOS] + sample['labels']
- dataset.append(Instance(raw_words=word_seq,
- pos=pos_seq,
- gold_heads=heads,
- arc_true=heads,
- tags=head_tags))
- return dataset
-
-
- def load(path):
- data = ConllxDataLoader().load(path)
- return convert(data)
-
-
- datadir = "/remote-home/yfshao/workdir/ctb9.0/"
- train_data_name = "train.conllx"
- dev_data_name = "dev.conllx"
- test_data_name = "test.conllx"
- emb_file_name = "/remote-home/yfshao/workdir/word_vector/cc.zh.300.vec"
-
- cfgfile = './cfg.cfg'
- processed_datadir = './save'
-
- # Config Loader
- train_args = ConfigSection()
- model_args = ConfigSection()
- optim_args = ConfigSection()
- ConfigLoader.load_config(cfgfile, {"train": train_args, "model": model_args, "optim": optim_args})
- print('trainre Args:', train_args.data)
- print('model Args:', model_args.data)
- print('optim_args', optim_args.data)
-
-
- # Pickle Loader
- def save_data(dirpath, **kwargs):
- import _pickle
- if not os.path.exists(dirpath):
- os.mkdir(dirpath)
- for name, data in kwargs.items():
- with open(os.path.join(dirpath, name+'.pkl'), 'wb') as f:
- _pickle.dump(data, f)
-
-
- def load_data(dirpath):
- import _pickle
- datas = {}
- for f_name in os.listdir(dirpath):
- if not f_name.endswith('.pkl'):
- continue
- name = f_name[:-4]
- with open(os.path.join(dirpath, f_name), 'rb') as f:
- datas[name] = _pickle.load(f)
- return datas
-
- def P2(data, field, length):
- ds = [ins for ins in data if len(ins[field]) >= length]
- data.clear()
- data.extend(ds)
- return ds
-
- def update_v(vocab, data, field):
- data.apply(lambda x: vocab.add_word_lst(x[field]), new_field_name=None)
-
-
- # use pretrain embedding
- word_v = Vocabulary(unknown=UNK, padding=PAD)
- pos_v = Vocabulary(unknown=None, padding=PAD)
- tag_v = Vocabulary(unknown=None, padding=None)
- train_data = load(os.path.join(datadir, train_data_name))
- dev_data = load(os.path.join(datadir, dev_data_name))
- test_data = load(os.path.join(datadir, test_data_name))
- print('load raw data and preprocess')
-
- num_p = Num2TagProcessor(tag=NUM, field_name='raw_words', new_added_field_name='words')
- for ds in (train_data, dev_data, test_data):
- num_p(ds)
- update_v(word_v, train_data, 'words')
- update_v(pos_v, train_data, 'pos')
- update_v(tag_v, train_data, 'tags')
-
- print('vocab build success {}, {}, {}'.format(len(word_v), len(pos_v), len(tag_v)))
-
- # Model
- model_args['word_vocab_size'] = len(word_v)
- model_args['pos_vocab_size'] = len(pos_v)
- model_args['num_label'] = len(tag_v)
-
- model = BiaffineParser(**model_args.data)
- print(model)
-
- word_idxp = IndexerProcessor(word_v, 'words', 'word_seq')
- pos_idxp = IndexerProcessor(pos_v, 'pos', 'pos_seq')
- tag_idxp = IndexerProcessor(tag_v, 'tags', 'label_true')
- seq_p = SeqLenProcessor('word_seq', 'seq_lens')
-
- set_input_p = SetInputProcessor('word_seq', 'pos_seq', 'seq_lens', flag=True)
- set_target_p = SetTargetProcessor('arc_true', 'label_true', 'seq_lens', flag=True)
-
- label_toword_p = Index2WordProcessor(vocab=tag_v, field_name='label_pred', new_added_field_name='label_pred_seq')
-
- for ds in (train_data, dev_data, test_data):
- word_idxp(ds)
- pos_idxp(ds)
- tag_idxp(ds)
- seq_p(ds)
- set_input_p(ds)
- set_target_p(ds)
-
- if train_args['use_golden_train']:
- train_data.set_input('gold_heads', flag=True)
- train_args.data.pop('use_golden_train')
-
- print(test_data[0])
- print('train len {}'.format(len(train_data)))
- print('dev len {}'.format(len(dev_data)))
- print('test len {}'.format(len(test_data)))
-
-
- def train(path):
- # test saving pipeline
- save_pipe(path)
- embed = EmbedLoader.load_with_vocab(emb_file_name, word_v)
- embed = torch.tensor(embed, dtype=torch.float32)
-
- # embed = EmbedLoader.fast_load_embedding(emb_dim=model_args['word_emb_dim'], emb_file=emb_file_name, vocab=word_v)
- # embed = torch.tensor(embed, dtype=torch.float32)
- # model.word_embedding = torch.nn.Embedding.from_pretrained(embed, freeze=True)
- model.word_embedding.padding_idx = word_v.padding_idx
- model.word_embedding.weight.data[word_v.padding_idx].fill_(0)
- model.pos_embedding.padding_idx = pos_v.padding_idx
- model.pos_embedding.weight.data[pos_v.padding_idx].fill_(0)
-
- class MyCallback(Callback):
- def on_step_end(self, optimizer):
- step = self.trainer.step
- # learning rate decay
- if step > 0 and step % 1000 == 0:
- for pg in optimizer.param_groups:
- pg['lr'] *= 0.93
- print('decay lr to {}'.format([pg['lr'] for pg in optimizer.param_groups]))
-
- if step == 3000:
- # start training embedding
- print('start training embedding at {}'.format(step))
- model = self.trainer.model
- for m in model.modules():
- if isinstance(m, torch.nn.Embedding):
- m.weight.requires_grad = True
-
- # Trainer
- trainer = Trainer(train_data=train_data, model=model, optimizer=fastNLP.Adam(**optim_args.data), loss=ParserLoss(),
- dev_data=dev_data, metrics=ParserMetric(), metric_key='UAS', save_path=path,
- callbacks=[MyCallback()])
-
- # Start training
- try:
- trainer.train()
- print("Training finished!")
- finally:
- # save pipeline
- save_pipe(path)
- print('pipe saved')
-
- def save_pipe(path):
- pipe = Pipeline(processors=[num_p, word_idxp, pos_idxp, seq_p, set_input_p])
- pipe.add_processor(ModelProcessor(model=model, batch_size=32))
- pipe.add_processor(label_toword_p)
- os.makedirs(path, exist_ok=True)
- torch.save({'pipeline': pipe,
- 'names':['num word_idx pos_idx seq set_input model tag_to_word'.split()],
- }, os.path.join(path, 'pipe.pkl'))
-
-
- def test(path):
- # Tester
- tester = Tester(**test_args.data)
-
- # Model
- model = BiaffineParser(**model_args.data)
- model.eval()
- try:
- ModelLoader.load_pytorch(model, path)
- print('model parameter loaded!')
- except Exception as _:
- print("No saved model. Abort test.")
- raise
-
- # Start training
- print("Testing Train data")
- tester.test(model, train_data)
- print("Testing Dev data")
- tester.test(model, dev_data)
- print("Testing Test data")
- tester.test(model, test_data)
-
-
- if __name__ == "__main__":
- import argparse
- parser = argparse.ArgumentParser(description='Run a chinese word segmentation model')
- parser.add_argument('--mode', help='set the model\'s model', choices=['train', 'test', 'infer'])
- parser.add_argument('--path', type=str, default='')
- # parser.add_argument('--dst', type=str, default='')
- args = parser.parse_args()
- if args.mode == 'train':
- train(args.path)
- elif args.mode == 'test':
- test(args.path)
- elif args.mode == 'infer':
- pass
- else:
- print('no mode specified for model!')
- parser.print_help()
|