|
- from fastNLP.envs.imports import _NEED_IMPORT_JITTOR
- if _NEED_IMPORT_JITTOR:
- from jittor import Module, nn
- else:
- from fastNLP.core.utils.dummy_class import DummyClass as Module
-
- class JittorNormalModel_Classification_1(Module):
- """
- 基础的 jittor 分类模型
- """
- def __init__(self, num_labels, feature_dimension):
- super(JittorNormalModel_Classification_1, self).__init__()
- self.num_labels = num_labels
-
- self.linear1 = nn.Linear(in_features=feature_dimension, out_features=64)
- self.ac1 = nn.ReLU()
- self.linear2 = nn.Linear(in_features=64, out_features=32)
- self.ac2 = nn.ReLU()
- self.output = nn.Linear(in_features=32, out_features=num_labels)
- self.loss_fn = nn.CrossEntropyLoss()
-
- def execute(self, x):
- x = self.ac1(self.linear1(x))
- x = self.ac2(self.linear2(x))
- x = self.output(x)
- return x
-
- def train_step(self, x, y):
- x = self(x)
- return {"loss": self.loss_fn(x, y)}
-
- def evaluate_step(self, x, y):
-
- x = self(x)
- return {"pred": x, "target": y.reshape((-1,))}
-
-
- class JittorNormalModel_Classification_2(Module):
- """
- 基础的 jittor 分类模型,只实现 execute 函数测试用户自己初始化了分布式的场景
- """
- def __init__(self, num_labels, feature_dimension):
- super(JittorNormalModel_Classification_2, self).__init__()
- self.num_labels = num_labels
-
- self.linear1 = nn.Linear(in_features=feature_dimension, out_features=64)
- self.ac1 = nn.ReLU()
- self.linear2 = nn.Linear(in_features=64, out_features=32)
- self.ac2 = nn.ReLU()
- self.output = nn.Linear(in_features=32, out_features=num_labels)
- self.loss_fn = nn.CrossEntropyLoss()
-
- def execute(self, x, y):
- x = self.ac1(self.linear1(x))
- x = self.ac2(self.linear2(x))
- x = self.output(x)
- return {"loss": self.loss_fn(x, y), "pred": x, "target": y.reshape((-1,))}
|