|
- import random
- import numpy as np
- import torch
-
- from fastNLP.core import Trainer, Tester, AccuracyMetric, Const, Adam
-
- from reproduction.matching.data.MatchingDataLoader import SNLILoader, RTELoader, \
- MNLILoader, QNLILoader, QuoraLoader
- from reproduction.matching.model.bert import BertForNLI
-
-
- # define hyper-parameters
- class BERTConfig:
-
- task = 'snli'
- batch_size_per_gpu = 6
- n_epochs = 6
- lr = 2e-5
- seq_len_type = 'bert'
- seed = 42
- train_dataset_name = 'train'
- dev_dataset_name = 'dev'
- test_dataset_name = 'test'
- save_path = None # 模型存储的位置,None表示不存储模型。
- bert_dir = 'path/to/bert/dir' # 预训练BERT参数文件的文件夹
-
-
- arg = BERTConfig()
-
- # set random seed
- random.seed(arg.seed)
- np.random.seed(arg.seed)
- torch.manual_seed(arg.seed)
-
- n_gpu = torch.cuda.device_count()
- if n_gpu > 0:
- torch.cuda.manual_seed_all(arg.seed)
-
- # load data set
- if arg.task == 'snli':
- data_info = SNLILoader().process(
- paths='path/to/snli/data', to_lower=True, seq_len_type=arg.seq_len_type,
- bert_tokenizer=arg.bert_dir, cut_text=512,
- get_index=True, concat='bert',
- )
- elif arg.task == 'rte':
- data_info = RTELoader().process(
- paths='path/to/rte/data', to_lower=True, seq_len_type=arg.seq_len_type,
- bert_tokenizer=arg.bert_dir, cut_text=512,
- get_index=True, concat='bert',
- )
- elif arg.task == 'qnli':
- data_info = QNLILoader().process(
- paths='path/to/qnli/data', to_lower=True, seq_len_type=arg.seq_len_type,
- bert_tokenizer=arg.bert_dir, cut_text=512,
- get_index=True, concat='bert',
- )
- elif arg.task == 'mnli':
- data_info = MNLILoader().process(
- paths='path/to/mnli/data', to_lower=True, seq_len_type=arg.seq_len_type,
- bert_tokenizer=arg.bert_dir, cut_text=512,
- get_index=True, concat='bert',
- )
- elif arg.task == 'quora':
- data_info = QuoraLoader().process(
- paths='path/to/quora/data', to_lower=True, seq_len_type=arg.seq_len_type,
- bert_tokenizer=arg.bert_dir, cut_text=512,
- get_index=True, concat='bert',
- )
- else:
- raise RuntimeError(f'NOT support {arg.task} task yet!')
-
- # define model
- model = BertForNLI(class_num=len(data_info.vocabs[Const.TARGET]), bert_dir=arg.bert_dir)
-
- # define trainer
- trainer = Trainer(train_data=data_info.datasets[arg.train_dataset_name], model=model,
- optimizer=Adam(lr=arg.lr, model_params=model.parameters()),
- batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu,
- n_epochs=arg.n_epochs, print_every=-1,
- dev_data=data_info.datasets[arg.dev_dataset_name],
- metrics=AccuracyMetric(), metric_key='acc',
- device=[i for i in range(torch.cuda.device_count())],
- check_code_level=-1,
- save_path=arg.save_path)
-
- # train model
- trainer.train(load_best_model=True)
-
- # define tester
- tester = Tester(
- data=data_info.datasets[arg.test_dataset_name],
- model=model,
- metrics=AccuracyMetric(),
- batch_size=torch.cuda.device_count() * arg.batch_size_per_gpu,
- device=[i for i in range(torch.cuda.device_count())],
- )
-
- # test model
- tester.test()
-
|