|
- # coding=utf-8
- # Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """ BART model configuration """
- from fastNLP.transformers.torch.configuration_utils import PretrainedConfig
- from fastNLP.core.log import logger
-
- __all__ = [
- "BartConfig",
- "BART_PRETRAINED_CONFIG_ARCHIVE_MAP",
- ]
-
- BART_PRETRAINED_CONFIG_ARCHIVE_MAP = {
- "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json",
- # See all BART models at https://huggingface.co/models?filter=bart
- }
-
-
- class BartConfig(PretrainedConfig):
- r"""
- This is the configuration class to store the configuration of a :class:`~transformers.BartModel`. It is used to
- instantiate a BART model according to the specified arguments, defining the model architecture. Instantiating a
- configuration with the defaults will yield a similar configuration to that of the BART `facebook/bart-large
- <https://huggingface.co/facebook/bart-large>`__ architecture.
-
- Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
- outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
-
-
- Args:
- vocab_size (:obj:`int`, `optional`, defaults to 50265):
- Vocabulary size of the BART model. Defines the number of different tokens that can be represented by the
- :obj:`inputs_ids` passed when calling :class:`~transformers.BartModel` or
- :class:`~transformers.TFBartModel`.
- d_model (:obj:`int`, `optional`, defaults to 1024):
- Dimensionality of the layers and the pooler layer.
- encoder_layers (:obj:`int`, `optional`, defaults to 12):
- Number of encoder layers.
- decoder_layers (:obj:`int`, `optional`, defaults to 12):
- Number of decoder layers.
- encoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
- Number of attention heads for each attention layer in the Transformer encoder.
- decoder_attention_heads (:obj:`int`, `optional`, defaults to 16):
- Number of attention heads for each attention layer in the Transformer decoder.
- decoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
- Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
- encoder_ffn_dim (:obj:`int`, `optional`, defaults to 4096):
- Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
- activation_function (:obj:`str` or :obj:`function`, `optional`, defaults to :obj:`"gelu"`):
- The non-linear activation function (function or string) in the encoder and pooler. If string,
- :obj:`"gelu"`, :obj:`"relu"`, :obj:`"silu"` and :obj:`"gelu_new"` are supported.
- dropout (:obj:`float`, `optional`, defaults to 0.1):
- The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
- attention_dropout (:obj:`float`, `optional`, defaults to 0.0):
- The dropout ratio for the attention probabilities.
- activation_dropout (:obj:`float`, `optional`, defaults to 0.0):
- The dropout ratio for activations inside the fully connected layer.
- classifier_dropout (:obj:`float`, `optional`, defaults to 0.0):
- The dropout ratio for classifier.
- max_position_embeddings (:obj:`int`, `optional`, defaults to 1024):
- The maximum sequence length that this model might ever be used with. Typically set this to something large
- just in case (e.g., 512 or 1024 or 2048).
- init_std (:obj:`float`, `optional`, defaults to 0.02):
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
- encoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
- The LayerDrop probability for the encoder. See the `LayerDrop paper <see
- https://arxiv.org/abs/1909.11556>`__ for more details.
- decoder_layerdrop: (:obj:`float`, `optional`, defaults to 0.0):
- The LayerDrop probability for the decoder. See the `LayerDrop paper <see
- https://arxiv.org/abs/1909.11556>`__ for more details.
- scale_embedding (:obj:`bool`, `optional`, defaults to :obj:`False`):
- Scale embeddings by diving by sqrt(d_model).
- use_cache (:obj:`bool`, `optional`, defaults to :obj:`True`):
- Whether or not the model should return the last key/values attentions (not used by all models).
- num_labels: (:obj:`int`, `optional`, defaults to 3):
- The number of labels to use in :class:`~transformers.BartForSequenceClassification`.
- forced_eos_token_id (:obj:`int`, `optional`, defaults to 2):
- The id of the token to force as the last generated token when :obj:`max_length` is reached. Usually set to
- :obj:`eos_token_id`.
-
- Example::
-
- >>> from transformers import BartModel, BartConfig
-
- >>> # Initializing a BART facebook/bart-large style configuration
- >>> configuration = BartConfig()
-
- >>> # Initializing a model from the facebook/bart-large style configuration
- >>> model = BartModel(configuration)
-
- >>> # Accessing the model configuration
- >>> configuration = model.config
- """
- model_type = "bart"
- keys_to_ignore_at_inference = ["past_key_values"]
- attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
-
- def __init__(
- self,
- vocab_size=50265,
- max_position_embeddings=1024,
- encoder_layers=12,
- encoder_ffn_dim=4096,
- encoder_attention_heads=16,
- decoder_layers=12,
- decoder_ffn_dim=4096,
- decoder_attention_heads=16,
- encoder_layerdrop=0.0,
- decoder_layerdrop=0.0,
- activation_function="gelu",
- d_model=1024,
- dropout=0.1,
- attention_dropout=0.0,
- activation_dropout=0.0,
- init_std=0.02,
- classifier_dropout=0.0,
- scale_embedding=False,
- use_cache=True,
- num_labels=3,
- pad_token_id=1,
- bos_token_id=0,
- eos_token_id=2,
- is_encoder_decoder=True,
- decoder_start_token_id=2,
- forced_eos_token_id=2,
- **kwargs
- ):
- self.vocab_size = vocab_size
- self.max_position_embeddings = max_position_embeddings
- self.d_model = d_model
- self.encoder_ffn_dim = encoder_ffn_dim
- self.encoder_layers = encoder_layers
- self.encoder_attention_heads = encoder_attention_heads
- self.decoder_ffn_dim = decoder_ffn_dim
- self.decoder_layers = decoder_layers
- self.decoder_attention_heads = decoder_attention_heads
- self.dropout = dropout
- self.attention_dropout = attention_dropout
- self.activation_dropout = activation_dropout
- self.activation_function = activation_function
- self.init_std = init_std
- self.encoder_layerdrop = encoder_layerdrop
- self.decoder_layerdrop = decoder_layerdrop
- self.classifier_dropout = classifier_dropout
- self.use_cache = use_cache
- self.num_hidden_layers = encoder_layers
- self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
-
- super().__init__(
- num_labels=num_labels,
- pad_token_id=pad_token_id,
- bos_token_id=bos_token_id,
- eos_token_id=eos_token_id,
- is_encoder_decoder=is_encoder_decoder,
- decoder_start_token_id=decoder_start_token_id,
- forced_eos_token_id=forced_eos_token_id,
- **kwargs,
- )
-
- # ensure backward compatibility for BART CNN models
- if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
- self.forced_bos_token_id = self.bos_token_id
- logger.rank_zero_warning(
- f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions."
- "The config can simply be saved and uploaded again to be fixed."
- )
|