|
- import unittest
-
- import numpy as np
- import torch
-
- from fastNLP import FieldArray
- from fastNLP.core.field import _get_ele_type_and_dim
- from fastNLP import AutoPadder
-
- class TestFieldArrayTyepDimDetect(unittest.TestCase):
- """
- 检测FieldArray能否正确识别type与ndim
-
- """
- def test_case1(self):
- # 1.1 常规类型测试
- for value in [1, True, 1.0, 'abc']:
- type_ = type(value)
- _type, _dim = _get_ele_type_and_dim(cell=value)
- self.assertListEqual([_type, _dim], [type_, 0])
- # 1.2 mix类型报错
- with self.assertRaises(Exception):
- value = [1, 2, 1.0]
- self.assertRaises(_get_ele_type_and_dim(value))
- # 带有numpy的测试
- # 2.1
- value = np.array([1, 2, 3])
- type_ = value.dtype
- dim_ = 1
- self.assertSequenceEqual(_get_ele_type_and_dim(cell=value), [type_, dim_])
- # 2.2
- value = np.array([[1, 2], [3, 4, 5]]) # char embedding的场景
- self.assertSequenceEqual([int, 2], _get_ele_type_and_dim(value))
- # 2.3
- value = np.zeros((3, 4))
- self.assertSequenceEqual([value.dtype, 2], _get_ele_type_and_dim(value))
- # 2.4 测试错误的dimension
- with self.assertRaises(Exception):
- value = np.array([[1, 2], [3, [1]]])
- _get_ele_type_and_dim(value)
- # 2.5 测试混合类型
- with self.assertRaises(Exception):
- value = np.array([[1, 2], [3.0]])
- _get_ele_type_and_dim(value)
-
- # 带有tensor的测试
- # 3.1 word embedding的场景
- value = torch.zeros(3, 10)
- self.assertSequenceEqual([value.dtype, 2], _get_ele_type_and_dim(value))
- # 3.2 char embedding/image的场景
- value = torch.zeros(3, 32, 32)
- self.assertSequenceEqual([value.dtype, 3], _get_ele_type_and_dim(value))
-
-
- class TestFieldArrayInit(unittest.TestCase):
- """
- 1) 如果DataSet使用dict初始化,那么在add_field中会构造FieldArray:
- 1.1) 二维list DataSet({"x": [[1, 2], [3, 4]]})
- 1.2) 二维array DataSet({"x": np.array([[1, 2], [3, 4]])})
- 1.3) 三维list DataSet({"x": [[[1, 2], [3, 4]], [[1, 2], [3, 4]]]})
- 2) 如果DataSet使用list of Instance 初始化,那么在append中会先对第一个样本初始化FieldArray;
- 然后后面的样本使用FieldArray.append进行添加。
- 2.1) 一维list DataSet([Instance(x=[1, 2, 3, 4])])
- 2.2) 一维array DataSet([Instance(x=np.array([1, 2, 3, 4]))])
- 2.3) 二维list DataSet([Instance(x=[[1, 2], [3, 4]])])
- 2.4) 二维array DataSet([Instance(x=np.array([[1, 2], [3, 4]]))])
- """
-
- def test_init_v1(self):
- # 二维list
- fa = FieldArray("x", [[1, 2], [3, 4]] * 5, is_input=True)
-
- def test_init_v2(self):
- # 二维array
- fa = FieldArray("x", np.array([[1, 2], [3, 4]] * 5), is_input=True)
-
- def test_init_v3(self):
- # 三维list
- fa = FieldArray("x", [[[1, 2], [3, 4]], [[1, 2], [3, 4]]], is_input=True)
-
- def test_init_v4(self):
- # 一维list
- val = [1, 2, 3, 4]
- fa = FieldArray("x", [val], is_input=True)
- fa.append(val)
-
- def test_init_v5(self):
- # 一维array
- val = np.array([1, 2, 3, 4])
- fa = FieldArray("x", [val], is_input=True)
- fa.append(val)
-
- def test_init_v6(self):
- # 二维array
- val = [[1, 2], [3, 4]]
- fa = FieldArray("x", [val], is_input=True)
- fa.append(val)
-
- def test_init_v7(self):
- # list of array
- fa = FieldArray("x", [np.array([[1, 2], [3, 4]]), np.array([[1, 2], [3, 4]])], is_input=True)
- self.assertEqual(fa.dtype, np.array([1]).dtype)
-
- def test_init_v8(self):
- # 二维list
- val = np.array([[1, 2], [3, 4]])
- fa = FieldArray("x", [val], is_input=True)
- fa.append(val)
-
-
- class TestFieldArray(unittest.TestCase):
- def test_main(self):
- fa = FieldArray("x", [1, 2, 3, 4, 5], is_input=True)
- self.assertEqual(len(fa), 5)
- fa.append(6)
- self.assertEqual(len(fa), 6)
-
- self.assertEqual(fa[-1], 6)
- self.assertEqual(fa[0], 1)
- fa[-1] = 60
- self.assertEqual(fa[-1], 60)
-
- self.assertEqual(fa.get(0), 1)
- self.assertTrue(isinstance(fa.get([0, 1, 2]), np.ndarray))
- self.assertListEqual(list(fa.get([0, 1, 2])), [1, 2, 3])
-
- def test_type_conversion(self):
- fa = FieldArray("x", [1, 2, 3, 4, 5], is_input=True)
- self.assertEqual(fa.dtype, int)
-
- fa = FieldArray("y", [1.1, 2.2, 3.3, 4.4, 5.5], is_input=True)
- fa.append(10.0)
- self.assertEqual(fa.dtype, float)
-
- fa = FieldArray("y", ["a", "b", "c", "d"], is_input=True)
- fa.append("e")
- self.assertEqual(fa.dtype, str)
-
- def test_support_np_array(self):
- fa = FieldArray("y", np.array([[1.1, 2.2, 3.3, 4.4, 5.5]]), is_input=True)
- self.assertEqual(fa.dtype, np.float64)
-
- fa.append(np.array([1.1, 2.2, 3.3, 4.4, 5.5]))
- self.assertEqual(fa.dtype, np.float64)
-
- fa = FieldArray("my_field", np.random.rand(3, 5), is_input=True)
- # in this case, pytype is actually a float. We do not care about it.
- self.assertEqual(fa.dtype, np.float64)
-
- def test_nested_list(self):
- fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1.1, 2.2, 3.3, 4.4, 5.5]], is_input=True)
- self.assertEqual(fa.dtype, float)
-
- def test_getitem_v1(self):
- fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1.0, 2.0, 3.0, 4.0, 5.0]], is_input=True)
- self.assertEqual(fa[0], [1.1, 2.2, 3.3, 4.4, 5.5])
- ans = fa[[0, 1]]
- self.assertTrue(isinstance(ans, np.ndarray))
- self.assertTrue(isinstance(ans[0], np.ndarray))
- self.assertEqual(ans[0].tolist(), [1.1, 2.2, 3.3, 4.4, 5.5])
- self.assertEqual(ans[1].tolist(), [1, 2, 3, 4, 5])
- self.assertEqual(ans.dtype, np.float64)
-
- def test_getitem_v2(self):
- x = np.random.rand(10, 5)
- fa = FieldArray("my_field", x, is_input=True)
- indices = [0, 1, 3, 4, 6]
- for a, b in zip(fa[indices], x[indices]):
- self.assertListEqual(a.tolist(), b.tolist())
-
- def test_append(self):
- with self.assertRaises(Exception):
- fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1, 2, 3, 4, 5]], is_input=True)
- fa.append(0)
-
- with self.assertRaises(Exception):
- fa = FieldArray("y", [1.1, 2.2, 3.3, 4.4, 5.5], is_input=True)
- fa.append([1, 2, 3, 4, 5])
-
- with self.assertRaises(Exception):
- fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1, 2, 3, 4, 5]], is_input=True)
- fa.append([])
-
- with self.assertRaises(Exception):
- fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1, 2, 3, 4, 5]], is_input=True)
- fa.append(["str", 0, 0, 0, 1.89])
-
- fa = FieldArray("y", [[1.1, 2.2, 3.3, 4.4, 5.5], [1.0, 2.0, 3.0, 4.0, 5.0]], is_input=True)
- fa.append([1.2, 2.3, 3.4, 4.5, 5.6])
- self.assertEqual(len(fa), 3)
- self.assertEqual(fa[2], [1.2, 2.3, 3.4, 4.5, 5.6])
-
- def test_ignore_type(self):
- # 测试新添加的参数ignore_type,用来跳过类型检查
- fa = FieldArray("y", [[1.1, 2.2, "jin", {}, "hahah"], [int, 2, "$", 4, 5]], is_input=True, ignore_type=True)
- fa.append([1.2, 2.3, str, 4.5, print])
-
- fa = FieldArray("y", [(1, "1"), (2, "2"), (3, "3"), (4, "4")], is_target=True, ignore_type=True)
-
-
- class TestAutoPadder(unittest.TestCase):
- def test00(self):
- padder = AutoPadder()
- # 没有类型时
- contents = [(1, 2), ('str', 'a')]
- padder(contents, None, None, None)
-
- def test01(self):
- # 测试使用多维的bool, int, str, float的情况
- # str
- padder = AutoPadder()
- content = ['This is a str', 'this is another str']
- self.assertListEqual(content, padder(content, None, str, 0).tolist())
-
- # 1维int
- content = [[1, 2, 3], [4,], [5, 6, 7, 8]]
- padded_content = [[1, 2, 3, 0], [4, 0, 0, 0], [5, 6, 7, 8]]
- self.assertListEqual(padder(content, None, int, 1).tolist(), padded_content)
-
- # 二维int
- padded_content = [[[1, 2, 3, 0], [4, 5, 0, 0], [7, 8, 9, 10]], [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]
- content = [
- [[1, 2, 3], [4, 5], [7, 8, 9, 10]],
- [[1]]
- ]
- self.assertListEqual(padder(content, None, int, 2).tolist(), padded_content)
-
- # 3维图片
- contents = [np.random.rand(3, 4, 4).tolist() for _ in range(5)]
- self.assertTrue(padder(contents, None, float, 3).shape==(5, 3, 4, 4))
-
- # 更高维度直接返回
- contents = [np.random.rand(24, 3, 4, 4).tolist() for _ in range(5)]
- self.assertTrue(isinstance(padder(contents, None, float, 4), np.ndarray))
-
- def test02(self):
- padder = AutoPadder()
- # 测试numpy的情况
- # 0维
- contents = np.arange(12)
- self.assertListEqual(padder(contents, None, contents.dtype, 0).tolist(), contents.tolist())
-
- # 1维
- contents = np.arange(12).reshape((3, 4))
- self.assertListEqual(padder(contents, None, contents.dtype, 1).tolist(), contents.tolist())
-
- # 2维
- contents = np.ones((3, 10, 5))
- self.assertListEqual(padder(contents, None, contents.dtype, 2).tolist(), contents.tolist())
-
- # 3维
- contents = [np.random.rand(3, 4, 4) for _ in range(5)]
- l_contents = [content.tolist() for content in contents]
- self.assertListEqual(padder(contents, None, contents[0].dtype, 3).tolist(), l_contents)
-
- def test03(self):
- padder = AutoPadder()
- # 测试tensor的情况
- # 0维
- contents = torch.arange(12)
- r_contents = padder(contents, None, contents.dtype, 0)
- self.assertSequenceEqual(r_contents.tolist(), contents.tolist())
- self.assertTrue(r_contents.dtype==contents.dtype)
-
- # 0维
- contents = [torch.tensor(1) for _ in range(10)]
- self.assertSequenceEqual(padder(contents, None, torch.int64, 0).tolist(), contents)
-
- # 1维
- contents = torch.randn(3, 4)
- padder(contents, None, torch.float64, 1)
-
- # 3维
- contents = [torch.randn(3, 4, 4) for _ in range(5)]
- padder(contents, None, torch.float64, 3)
-
-
-
- class TestEngChar2DPadder(unittest.TestCase):
- def test01(self):
- """
- 测试EngChar2DPadder能不能正确使用
- :return:
- """
- from fastNLP import EngChar2DPadder
- padder = EngChar2DPadder(pad_length=0)
-
- contents = [1, 2]
- # 不能是0维
- with self.assertRaises(Exception):
- padder(contents, None, np.int64, 0)
- contents = [[1, 2]]
- # 不能是1维
- with self.assertRaises(Exception):
- padder(contents, None, np.int64, 1)
- contents = [
- [[[[1, 2]]]]
- ]
- # 不能是3维以上
- with self.assertRaises(Exception):
- padder(contents, None, np.int64, 3)
-
- contents = [
- [[1, 2, 3], [4, 5], [7,8,9,10]],
- [[1]]
- ]
- self.assertListEqual([[[1, 2, 3, 0], [4, 5, 0, 0], [7, 8, 9, 10]], [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]],
- padder(contents, None, np.int64, 2).tolist())
-
- padder = EngChar2DPadder(pad_length=5, pad_val=-100)
- self.assertListEqual(
- [[[1, 2, 3, -100, -100], [4, 5, -100, -100, -100], [7, 8, 9, 10, -100]],
- [[1, -100, -100, -100, -100], [-100, -100, -100, -100, -100], [-100, -100, -100, -100, -100]]],
- padder(contents, None, np.int64, 2).tolist()
- )
|