|
- import os
-
- from fastNLP.core.predictor import Predictor
- from fastNLP.core.preprocess import Preprocessor, load_pickle
- from fastNLP.core.tester import SeqLabelTester
- from fastNLP.core.trainer import SeqLabelTrainer
- from fastNLP.loader.config_loader import ConfigLoader, ConfigSection
- from fastNLP.loader.dataset_loader import TokenizeDatasetLoader, BaseLoader
- from fastNLP.loader.model_loader import ModelLoader
- from fastNLP.models.sequence_modeling import SeqLabeling
- from fastNLP.saver.model_saver import ModelSaver
-
- data_name = "pku_training.utf8"
- cws_data_path = "test/data_for_tests/cws_pku_utf_8"
- pickle_path = "./save/"
- data_infer_path = "test/data_for_tests/people_infer.txt"
- config_path = "test/data_for_tests/config"
-
- def infer():
- # Load infer configuration, the same as test
- test_args = ConfigSection()
- ConfigLoader("config.cfg").load_config(config_path, {"POS_infer": test_args})
-
- # fetch dictionary size and number of labels from pickle files
- word2index = load_pickle(pickle_path, "word2id.pkl")
- test_args["vocab_size"] = len(word2index)
- index2label = load_pickle(pickle_path, "class2id.pkl")
- test_args["num_classes"] = len(index2label)
-
- # Define the same model
- model = SeqLabeling(test_args)
-
- # Dump trained parameters into the model
- ModelLoader.load_pytorch(model, "./save/saved_model.pkl")
- print("model loaded!")
-
- # Data Loader
- raw_data_loader = BaseLoader(data_infer_path)
- infer_data = raw_data_loader.load_lines()
-
- # Inference interface
- infer = Predictor(pickle_path, "seq_label")
- results = infer.predict(model, infer_data)
-
- print(results)
-
-
- def train_test():
- # Config Loader
- train_args = ConfigSection()
- ConfigLoader("config.cfg").load_config(config_path, {"POS_infer": train_args})
-
- # Data Loader
- loader = TokenizeDatasetLoader(cws_data_path)
- train_data = loader.load_pku()
-
- # Preprocessor
- p = Preprocessor(label_is_seq=True)
- data_train = p.run(train_data, pickle_path=pickle_path)
- train_args["vocab_size"] = p.vocab_size
- train_args["num_classes"] = p.num_classes
-
- # Trainer
- trainer = SeqLabelTrainer(**train_args.data)
-
- # Model
- model = SeqLabeling(train_args)
-
- # Start training
- trainer.train(model, data_train)
-
- # Saver
- saver = ModelSaver("./save/saved_model.pkl")
- saver.save_pytorch(model)
-
- del model, trainer, loader
-
- # Define the same model
- model = SeqLabeling(train_args)
-
- # Dump trained parameters into the model
- ModelLoader.load_pytorch(model, "./save/saved_model.pkl")
-
- # Load test configuration
- test_args = ConfigSection()
- ConfigLoader("config.cfg").load_config(config_path, {"POS_infer": test_args})
-
- # Tester
- tester = SeqLabelTester(**test_args.data)
-
- # Start testing
- tester.test(model, data_train)
-
- # print test results
- print(tester.show_metrics())
-
-
- def test():
- os.makedirs("save", exist_ok=True)
- train_test()
- infer()
- os.system("rm -rf save")
-
-
- if __name__ == "__main__":
- train_test()
- infer()
|