|
-
- import unittest
-
- import os
-
- from fastNLP.io import DataBundle
- from fastNLP.io.loader.matching import RTELoader, QNLILoader, SNLILoader, QuoraLoader, MNLILoader, \
- BQCorpusLoader, CNXNLILoader, LCQMCLoader
-
-
- @unittest.skipIf('TRAVIS' in os.environ, "Skip in travis")
- class TestMatchingDownload(unittest.TestCase):
- def test_download(self):
- for loader in [RTELoader, QNLILoader, SNLILoader, MNLILoader]:
- loader().download()
- with self.assertRaises(Exception):
- QuoraLoader().load()
-
- def test_load(self):
- for loader in [RTELoader, QNLILoader, SNLILoader, MNLILoader]:
- data_bundle = loader().load()
- print(data_bundle)
-
-
- class TestMatchingLoad(unittest.TestCase):
- def test_load(self):
- data_set_dict = {
- 'RTE': ('test/data_for_tests/io/RTE', RTELoader, (5, 5, 5), True),
- 'SNLI': ('test/data_for_tests/io/SNLI', SNLILoader, (5, 5, 5), False),
- 'QNLI': ('test/data_for_tests/io/QNLI', QNLILoader, (5, 5, 5), True),
- 'MNLI': ('test/data_for_tests/io/MNLI', MNLILoader, (5, 5, 5, 5, 6), True),
- 'Quora': ('test/data_for_tests/io/Quora', QuoraLoader, (2, 2, 2), False),
- 'BQCorpus': ('test/data_for_tests/io/BQCorpus', BQCorpusLoader, (5, 5, 5), False),
- 'XNLI': ('test/data_for_tests/io/XNLI', CNXNLILoader, (6, 7, 6), False),
- 'LCQMC': ('test/data_for_tests/io/LCQMC', LCQMCLoader, (5, 6, 6), False),
- }
- for k, v in data_set_dict.items():
- path, loader, instance, warns = v
- if warns:
- with self.assertWarns(Warning):
- data_bundle = loader().load(path)
- else:
- data_bundle = loader().load(path)
-
- self.assertTrue(isinstance(data_bundle, DataBundle))
- self.assertEqual(len(instance), data_bundle.num_dataset)
- for x, y in zip(instance, data_bundle.iter_datasets()):
- name, dataset = y
- self.assertEqual(x, len(dataset))
|