这里使用fastNLP复现以下模型:
char_cnn :论文链接Character-level Convolutional Networks for Text Classification
dpcnn:论文链接Deep Pyramid Convolutional Neural Networks for TextCategorization
HAN:论文链接Hierarchical Attention Networks for Document Classification
LSTM+self_attention:论文链接A Structured Self-attentive Sentence Embedding
AWD-LSTM:论文链接Regularizing and Optimizing LSTM Language Models
#数据集来源
IMDB:http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz
SST-2:https://firebasestorage.googleapis.com/v0/b/mtl-sentence-representations.appspot.com/o/data%2FSST-2.zip?alt=media&token=aabc5f6b-e466-44a2-b9b4-cf6337f84ac8
SST:https://nlp.stanford.edu/sentiment/trainDevTestTrees_PTB.zip
yelp_full:https://drive.google.com/drive/folders/0Bz8a_Dbh9Qhbfll6bVpmNUtUcFdjYmF2SEpmZUZUcVNiMUw1TWN6RDV3a0JHT3kxLVhVR2M
yelp_polarity:https://drive.google.com/drive/folders/0Bz8a_Dbh9Qhbfll6bVpmNUtUcFdjYmF2SEpmZUZUcVNiMUw1TWN6RDV3a0JHT3kxLVhVR2M
使用fastNLP复现的结果vs论文汇报结果(/前为fastNLP实现,后面为论文报道,-表示论文没有在该数据集上列出结果)
model name | yelp_p | yelp_f | sst-2 | IMDB |
---|---|---|---|---|
char_cnn | 93.80/95.12 | - | - | - |
dpcnn | 95.50/97.36 | - | - | - |
HAN | - | - | - | - |
LSTM | 95.74/- | 64.16/- | - | 88.52/- |
AWD-LSTM | 95.96/- | 64.74/- | - | 88.91/- |
LSTM+self_attention | 96.34/- | 65.78/- | - | 89.53/- |