|
- from collections import defaultdict
-
- import torch
- from torch import nn
-
- from fastNLP.core.batch import Batch
- from fastNLP.core.dataset import DataSet
- from fastNLP.core.metrics import _prepare_metrics
- from fastNLP.core.sampler import SequentialSampler
- from fastNLP.core.utils import CheckError
- from fastNLP.core.utils import _build_args
- from fastNLP.core.utils import _check_loss_evaluate
- from fastNLP.core.utils import _move_dict_value_to_device
- from fastNLP.core.utils import get_func_signature
-
-
- class Tester(object):
- """An collection of model inference and evaluation of performance, used over validation/dev set and test set. """
-
- def __init__(self, data, model, metrics, batch_size=16, use_cuda=False, verbose=1):
- super(Tester, self).__init__()
-
- if not isinstance(data, DataSet):
- raise TypeError(f"The type of data must be `fastNLP.DataSet`, got `{type(data)}`.")
- if not isinstance(model, nn.Module):
- raise TypeError(f"The type of model must be `torch.nn.Module`, got `{type(model)}`.")
-
- self.metrics = _prepare_metrics(metrics)
-
- self.data = data
- self.use_cuda = use_cuda
- self.batch_size = batch_size
- self.verbose = verbose
- self._model_device = model.parameters().__next__().device
-
- if torch.cuda.is_available() and self.use_cuda:
- self._model = model.cuda()
- else:
- self._model = model
-
- # check predict
- if hasattr(self._model, 'predict'):
- self._predict_func = self._model.predict
- if not callable(self._predict_func):
- _model_name = model.__class__.__name__
- raise TypeError(f"`{_model_name}.predict` must be callable to be used "
- f"for evaluation, not `{type(self._predict_func)}`.")
- else:
- self._predict_func = self._model.forward
-
- def test(self):
- # turn on the testing mode; clean up the history
- network = self._model
- self._mode(network, is_test=True)
- data_iterator = Batch(self.data, self.batch_size, sampler=SequentialSampler(), as_numpy=False)
- eval_results = {}
- try:
- with torch.no_grad():
- for batch_x, batch_y in data_iterator:
- _move_dict_value_to_device(batch_x, batch_y, device=self._model_device)
- pred_dict = self._data_forward(self._predict_func, batch_x)
- if not isinstance(pred_dict, dict):
- raise TypeError(f"The return value of {get_func_signature(self._predict_func)} "
- f"must be `dict`, got {type(pred_dict)}.")
- for metric in self.metrics:
- metric(pred_dict, batch_y)
- for metric in self.metrics:
- eval_result = metric.get_metric()
- if not isinstance(eval_result, dict):
- raise TypeError(f"The return value of {get_func_signature(metric.get_metric)} must be "
- f"`dict`, got {type(eval_result)}")
- metric_name = metric.__class__.__name__
- eval_results[metric_name] = eval_result
- except CheckError as e:
- prev_func_signature = get_func_signature(self._predict_func)
- _check_loss_evaluate(prev_func_signature=prev_func_signature, func_signature=e.func_signature,
- check_res=e.check_res, pred_dict=pred_dict, target_dict=batch_y,
- dataset=self.data, check_level=0)
-
- if self.verbose >= 1:
- print("[tester] \n{}".format(self._format_eval_results(eval_results)))
- self._mode(network, is_test=False)
- return eval_results
-
- def _mode(self, model, is_test=False):
- """Train mode or Test mode. This is for PyTorch currently.
-
- :param model: a PyTorch model
- :param is_test: bool, whether in test mode or not.
-
- """
- if is_test:
- model.eval()
- else:
- model.train()
-
- def _data_forward(self, func, x):
- """A forward pass of the model. """
- x = _build_args(func, **x)
- y = func(**x)
- return y
-
- def _format_eval_results(self, results):
- """Override this method to support more print formats.
-
- :param results: dict, (str: float) is (metrics name: value)
-
- """
- _str = ''
- for metric_name, metric_result in results.items():
- _str += metric_name + ': '
- _str += ", ".join([str(key) + "=" + str(value) for key, value in metric_result.items()])
- _str += '\n'
- return _str[:-1]
|