|
- r"""
- 将transformers包中的模型封装成fastNLP中的embedding对象
-
- """
- import os
- from itertools import chain
- from functools import partial
-
- from torch import nn
- import numpy as np
- import torch
-
- from .contextual_embedding import ContextualEmbedding
- from .. import Vocabulary
- from .. import logger
-
-
- class TransformersEmbedding(ContextualEmbedding):
- r"""
- 使用transformers中的模型对words进行编码的Embedding。建议将输入的words长度限制在430以内,而不要使用512(根据预训练模型参数,可能有变化)。这是由于
- 预训练的bert模型长度限制为512个token,而因为输入的word是未进行word piece分割的(word piece的分割由TransformersEmbedding在输入word
- 时切分),在分割之后长度可能会超过最大长度限制。
-
- Example::
-
- >>> import torch
- >>> from fastNLP import Vocabulary
- >>> from fastNLP.embeddings import TransformersEmbedding
- >>> from transformers import ElectraModel, ElectraTokenizer
- >>> vocab = Vocabulary().add_word_lst("The whether is good .".split())
- >>> model = ElectraModel.from_pretrained("google/electra-small-generator")
- >>> tokenizer = ElectraTokenizer.from_pretrained("google/electra-small-generator")
- >>> embed = TransformersEmbedding(vocab, model_dir_or_name='en', requires_grad=False, layers='4,-2,-1')
- >>> words = torch.LongTensor([[vocab.to_index(word) for word in "The whether is good .".split()]])
- >>> outputs = embed(words)
- >>> outputs.size()
- >>> # torch.Size([1, 5, 2304])
-
- """
- def __init__(self, vocab, model, tokenizer, layers='-1',
- pool_method: str = 'first', word_dropout=0, dropout=0, requires_grad=True,
- include_cls_sep: bool = False, auto_truncate=True, **kwargs):
- r"""
-
- :param ~fastNLP.Vocabulary vocab: 词表
- :model model: transformers包中的PreTrainedModel对象
- :param tokenizer: transformers包中的PreTrainedTokenizer对象
- :param str,list layers: 输出embedding表示来自于哪些层,不同层的结果按照layers中的顺序在最后一维concat起来。以','隔开层数,层的序号是
- 从0开始,可以以负数去索引倒数几层。layer=0为embedding层(包括wordpiece embedding, position embedding)
- :param str pool_method: 因为在bert中,每个word会被表示为多个word pieces, 当获取一个word的表示的时候,怎样从它的word pieces
- 中计算得到它对应的表示。支持 ``last`` , ``first`` , ``avg`` , ``max``。
- :param float word_dropout: 以多大的概率将一个词替换为unk。这样既可以训练unk也是一定的regularize。
- :param float dropout: 以多大的概率对embedding的表示进行Dropout。0.1即随机将10%的值置为0。
- :param bool include_cls_sep: bool,在bert计算句子的表示的时候,需要在前面加上[CLS]和[SEP], 是否在结果中保留这两个内容。 这样
- 会使得word embedding的结果比输入的结果长两个token。如果该值为True,则在使用 :class::StackEmbedding 可能会与其它类型的
- embedding长度不匹配。
- :param bool pooled_cls: 返回的<s>是否使用预训练中的BertPool映射一下,仅在include_cls_sep时有效。如果下游任务只取<s>做预测,
- 一般该值为True。
- :param bool requires_grad: 是否需要gradient以更新Bert的权重。
- :param bool auto_truncate: 当句子words拆分为word pieces长度超过bert最大允许长度(一般为512), 自动截掉拆分后的超过510个
- word pieces后的内容,并将第512个word piece置为</s>。超过长度的部分的encode结果直接全部置零。一般仅有只使用<s>
- 来进行分类的任务将auto_truncate置为True。
- :param kwargs:
- int min_freq: 小于该次数的词会被unk代替, 默认为1
- """
- super().__init__(vocab, word_dropout=word_dropout, dropout=dropout)
-
- if word_dropout > 0:
- assert vocab.unknown is not None, "When word_drop > 0, Vocabulary must contain the unknown token."
-
- self._word_sep_index = -100
- if tokenizer.sep_token in vocab:
- self._word_sep_index = vocab[tokenizer.sep_token]
-
- self._word_cls_index = -100
- if tokenizer.cls_token in vocab:
- self._word_cls_index = vocab[tokenizer.cls_token]
-
- min_freq = kwargs.get('min_freq', 1)
- self._min_freq = min_freq
-
- self.model = _TransformersWordModel(tokenizer=tokenizer, model=model, vocab=vocab, layers=layers,
- pool_method=pool_method, include_cls_sep=include_cls_sep,
- auto_truncate=auto_truncate, min_freq=min_freq)
-
- self.requires_grad = requires_grad
- self._embed_size = len(self.model.layers) * model.config.hidden_size
-
- def forward(self, words):
- r"""
- 计算words的roberta embedding表示。计算之前会在每句话的开始增加<s>在结束增加</s>, 并根据include_cls_sep判断要不要
- 删除这两个token的表示。
-
- :param torch.LongTensor words: [batch_size, max_len]
- :return: torch.FloatTensor. batch_size x max_len x (768*len(self.layers))
- """
- words = self.drop_word(words)
- outputs = self._get_sent_reprs(words)
- if outputs is not None:
- return self.dropout(outputs)
- outputs = self.model(words)
- outputs = torch.cat([*outputs], dim=-1)
-
- return self.dropout(outputs)
-
- def drop_word(self, words):
- r"""
- 按照设定随机将words设置为unknown_index。
-
- :param torch.LongTensor words: batch_size x max_len
- :return:
- """
- if self.word_dropout > 0 and self.training:
- with torch.no_grad():
- mask = torch.full_like(words, fill_value=self.word_dropout, dtype=torch.float, device=words.device)
- mask = torch.bernoulli(mask).eq(1) # dropout_word越大,越多位置为1
- pad_mask = words.ne(self._word_pad_index)
- mask = pad_mask.__and__(mask) # pad的位置不为unk
- if self._word_sep_index!=-100:
- not_sep_mask = words.ne(self._word_sep_index)
- mask = mask.__and__(not_sep_mask)
- if self._word_cls_index!=-100:
- not_cls_mask = words.ne(self._word_cls_index)
- mask = mask.__and__(not_cls_mask)
- words = words.masked_fill(mask, self._word_unk_index)
- return words
-
- def save(self, folder):
- """
- 保存tokenizer和model到folder文件夹。model保存在`folder/{model_name}`, tokenizer在`folder/{tokenizer_name}`下
- :param str folder: 保存地址
- :return:
- """
- os.makedirs(folder, exist_ok=True)
- self.model.save(folder)
-
-
- class TransformersWordPieceEncoder(nn.Module):
- r"""
- 读取roberta模型,读取之后调用index_dataset方法在dataset中生成word_pieces这一列。
-
- RobertaWordPieceEncoder可以支持自动下载权重,当前支持的模型:
- en: roberta-base
- en-large: roberta-large
-
- """
- def __init__(self, model, tokenizer, layers: str = '-1',
- word_dropout=0, dropout=0, requires_grad: bool = True, **kwargs):
- r"""
-
- :param model: transformers的model
- :param tokenizer: transformer的tokenizer
- :param str layers: 最终结果中的表示。以','隔开层数,可以以负数去索引倒数几层。layer=0为embedding层(包括wordpiece embedding,
- position embedding)
- :param float word_dropout: 以多大的概率将一个词替换为unk。这样既可以训练unk也是一定的regularize。
- :param float dropout: 以多大的概率对embedding的表示进行Dropout。0.1即随机将10%的值置为0。
- :param bool requires_grad: 是否需要gradient。
- """
- super().__init__()
-
- self.model = _WordPieceTransformersModel(model=model, tokenizer=tokenizer, layers=layers)
- self._sep_index = self.model._sep_index
- self._cls_index = self.model._cls_index
- self._wordpiece_pad_index = self.model._wordpiece_pad_index
- self._wordpiece_unk_index = self.model._wordpiece_unknown_index
- self._embed_size = len(self.model.layers) * self.model.config.hidden_size
- self.requires_grad = requires_grad
- self.word_dropout = word_dropout
- self.dropout_layer = nn.Dropout(dropout)
-
- @property
- def embed_size(self):
- return self._embed_size
-
- @property
- def embedding_dim(self):
- return self._embed_size
-
- @property
- def num_embedding(self):
- return self.model.encoder.config.vocab_size
-
- def index_datasets(self, *datasets, field_name, **kwargs):
- r"""
- 使用bert的tokenizer新生成word_pieces列加入到datasets中,并将他们设置为input,且将word_pieces这一列的pad value设置为了
- bert的pad value。
-
- :param ~fastNLP.DataSet datasets: DataSet对象
- :param str field_name: 基于哪一列的内容生成word_pieces列。这一列中每个数据应该是raw_string的形式。
- :param kwargs: 传递给tokenizer的参数
- :return:
- """
- self.model.index_datasets(*datasets, field_name=field_name, **kwargs)
-
- def forward(self, word_pieces, token_type_ids=None):
- r"""
- 计算words的bert embedding表示。传入的words中应该自行包含[CLS]与[SEP]的tag。
-
- :param words: batch_size x max_len
- :param token_type_ids: batch_size x max_len, 用于区分前一句和后一句话. 如果不传入,则自动生成(大部分情况,都不需要输入),
- 第一个[SEP]及之前为0, 第二个[SEP]及到第一个[SEP]之间为1; 第三个[SEP]及到第二个[SEP]之间为0,依次往后推。
- :return: torch.FloatTensor. batch_size x max_len x (768*len(self.layers))
- """
- word_pieces = self.drop_word(word_pieces)
- outputs = self.model(word_pieces)
- outputs = torch.cat([*outputs], dim=-1)
-
- return self.dropout_layer(outputs)
-
- def drop_word(self, words):
- r"""
- 按照设定随机将words设置为unknown_index。
-
- :param torch.LongTensor words: batch_size x max_len
- :return:
- """
- if self.word_dropout > 0 and self.training:
- with torch.no_grad():
- not_sep_mask = words.ne(self._sep_index)
- not_cls_mask = words.ne(self._cls_index)
- replaceable_mask = not_sep_mask.__and__(not_cls_mask)
- mask = torch.full_like(words, fill_value=self.word_dropout, dtype=torch.float, device=words.device)
- mask = torch.bernoulli(mask).eq(1) # dropout_word越大,越多位置为1
- pad_mask = words.ne(self._wordpiece_pad_index)
- mask = pad_mask.__and__(mask).__and__(replaceable_mask) # pad的位置不为unk
- words = words.masked_fill(mask, self._wordpiece_unk_index)
- return words
-
- def save(self, folder):
- os.makedirs(folder, exist_ok=True)
- self.model.save(os.path.join(folder, folder))
- logger.debug(f"TransformersWordPieceEncoder has been saved in {folder}")
-
-
- class _TransformersWordModel(nn.Module):
- def __init__(self, tokenizer, model, vocab: Vocabulary, layers: str = '-1', pool_method: str = 'first',
- include_cls_sep: bool = False, auto_truncate: bool = False, min_freq=2):
- super().__init__()
-
- self.tokenizer = tokenizer
- self.encoder = model
- self.config = model.config
- self.only_last_layer = True
- if not (isinstance(layers, str) and (layers=='-1' or int(layers)==self.encoder.config.num_hidden_layers)):
- assert self.encoder.config.output_hidden_states == True, \
- f"You have to output all hidden states if you want to" \
- f" access the middle output of `{model.__class__.__name__}` "
- self.only_last_layer = False
-
- self._max_position_embeddings = self.encoder.config.max_position_embeddings - 2
- # 检查encoder_layer_number是否合理
- encoder_layer_number = len(self.encoder.encoder.layer)
- self.encoder_layer_number = encoder_layer_number
- if isinstance(layers, list):
- self.layers = [int(l) for l in layers]
- elif isinstance(layers, str):
- self.layers = list(map(int, layers.split(',')))
- else:
- raise TypeError("`layers` only supports str or list[int]")
-
- for layer in self.layers:
- if layer < 0:
- assert -layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \
- f"a {model.__class__.__name__} model with {encoder_layer_number} layers."
- else:
- assert layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \
- f"a {model.__class__.__name__} model with {encoder_layer_number} layers."
-
- assert pool_method in ('avg', 'max', 'first', 'last')
- self.pool_method = pool_method
- self.include_cls_sep = include_cls_sep
- self.auto_truncate = auto_truncate
-
- word_to_wordpieces = []
- word_pieces_lengths = []
- for word, index in vocab:
- if index == vocab.padding_idx: # pad是个特殊的符号
- word = tokenizer.pad_token
- elif index == vocab.unknown_idx:
- word = tokenizer.unk_token
- elif vocab.word_count[word]<min_freq:
- word = tokenizer.unk_token
- word_pieces = self.tokenizer.tokenize(word)
- word_pieces = self.tokenizer.convert_tokens_to_ids(word_pieces)
- word_to_wordpieces.append(word_pieces)
- word_pieces_lengths.append(len(word_pieces))
- self._cls_index = self.tokenizer.cls_token_id
- self._sep_index = self.tokenizer.sep_token_id
- self._word_pad_index = vocab.padding_idx
- self._wordpiece_pad_index = self.tokenizer.pad_token_id # 需要用于生成word_piece
- self.word_to_wordpieces = np.array(word_to_wordpieces)
- self.register_buffer('word_pieces_lengths', torch.LongTensor(word_pieces_lengths))
- logger.debug("Successfully generate word pieces.")
-
- def forward(self, words):
- r"""
-
- :param words: torch.LongTensor, batch_size x max_len
- :return: num_layers x batch_size x max_len x hidden_size或者num_layers x batch_size x (max_len+2) x hidden_size
- """
- with torch.no_grad():
- batch_size, max_word_len = words.size()
- word_mask = words.ne(self._word_pad_index) # 为1的地方有word
- seq_len = word_mask.sum(dim=-1)
- batch_word_pieces_length = self.word_pieces_lengths[words].masked_fill(word_mask.eq(False), 0) # batch_size x max_len
- word_pieces_lengths = batch_word_pieces_length.sum(dim=-1) # batch_size
- max_word_piece_length = batch_word_pieces_length.sum(dim=-1).max().item() # 表示word piece的长度(包括padding)
- if max_word_piece_length + 2 > self._max_position_embeddings:
- if self.auto_truncate:
- word_pieces_lengths = word_pieces_lengths.masked_fill(
- word_pieces_lengths + 2 > self._max_position_embeddings, self._max_position_embeddings - 2)
- else:
- raise RuntimeError(
- "After split words into word pieces, the lengths of word pieces are longer than the "
- f"maximum allowed sequence length:{self._max_position_embeddings} of bert. You can set "
- f"`auto_truncate=True` for BertEmbedding to automatically truncate overlong input.")
-
- # +2是由于需要加入<s>与</s>
- word_pieces = words.new_full((batch_size, min(max_word_piece_length + 2, self._max_position_embeddings)),
- fill_value=self._wordpiece_pad_index)
- attn_masks = torch.zeros_like(word_pieces)
- # 1. 获取words的word_pieces的id,以及对应的span范围
- word_indexes = words.cpu().numpy()
- for i in range(batch_size):
- word_pieces_i = list(chain(*self.word_to_wordpieces[word_indexes[i, :seq_len[i]]]))
- if self.auto_truncate and len(word_pieces_i) > self._max_position_embeddings - 2:
- word_pieces_i = word_pieces_i[:self._max_position_embeddings - 2]
- word_pieces[i, 1:word_pieces_lengths[i] + 1] = torch.LongTensor(word_pieces_i)
- attn_masks[i, :word_pieces_lengths[i] + 2].fill_(1)
- word_pieces[:, 0].fill_(self._cls_index)
- batch_indexes = torch.arange(batch_size).to(words)
- word_pieces[batch_indexes, word_pieces_lengths + 1] = self._sep_index
- token_type_ids = torch.zeros_like(word_pieces)
- # 2. 获取hidden的结果,根据word_pieces进行对应的pool计算
- # all_outputs: [batch_size x max_len x hidden_size, batch_size x max_len x hidden_size, ...]
- all_outputs = self.encoder(input_ids=word_pieces, token_type_ids=token_type_ids,
- attention_mask=attn_masks)
- if not self.only_last_layer:
- for _ in all_outputs:
- if isinstance(_, (tuple, list)) and len(_)==self.encoder_layer_number:
- bert_outputs = _
- break
- else:
- bert_outputs = all_outputs[:1]
- # output_layers = [self.layers] # len(self.layers) x batch_size x real_word_piece_length x hidden_size
-
- if self.include_cls_sep:
- s_shift = 1
- outputs = bert_outputs[-1].new_zeros(len(self.layers), batch_size, max_word_len + 2,
- bert_outputs[-1].size(-1))
-
- else:
- s_shift = 0
- outputs = bert_outputs[-1].new_zeros(len(self.layers), batch_size, max_word_len,
- bert_outputs[-1].size(-1))
- batch_word_pieces_cum_length = batch_word_pieces_length.new_zeros(batch_size, max_word_len + 1)
- batch_word_pieces_cum_length[:, 1:] = batch_word_pieces_length.cumsum(dim=-1) # batch_size x max_len
-
- if self.pool_method == 'first':
- batch_word_pieces_cum_length = batch_word_pieces_cum_length[:, :seq_len.max()]
- batch_word_pieces_cum_length.masked_fill_(batch_word_pieces_cum_length.ge(max_word_piece_length), 0)
- _batch_indexes = batch_indexes[:, None].expand((batch_size, batch_word_pieces_cum_length.size(1)))
- elif self.pool_method == 'last':
- batch_word_pieces_cum_length = batch_word_pieces_cum_length[:, 1:seq_len.max() + 1] - 1
- batch_word_pieces_cum_length.masked_fill_(batch_word_pieces_cum_length.ge(max_word_piece_length), 0)
- _batch_indexes = batch_indexes[:, None].expand((batch_size, batch_word_pieces_cum_length.size(1)))
-
- for l_index, l in enumerate(self.layers):
- output_layer = bert_outputs[l]
- real_word_piece_length = output_layer.size(1) - 2
- if max_word_piece_length > real_word_piece_length: # 如果实际上是截取出来的
- paddings = output_layer.new_zeros(batch_size,
- max_word_piece_length - real_word_piece_length,
- output_layer.size(2))
- output_layer = torch.cat((output_layer, paddings), dim=1).contiguous()
- # 从word_piece collapse到word的表示
- truncate_output_layer = output_layer[:, 1:-1] # 删除<s>与</s> batch_size x len x hidden_size
- if self.pool_method == 'first':
- tmp = truncate_output_layer[_batch_indexes, batch_word_pieces_cum_length]
- tmp = tmp.masked_fill(word_mask[:, :batch_word_pieces_cum_length.size(1), None].eq(False), 0)
- outputs[l_index, :, s_shift:batch_word_pieces_cum_length.size(1) + s_shift] = tmp
-
- elif self.pool_method == 'last':
- tmp = truncate_output_layer[_batch_indexes, batch_word_pieces_cum_length]
- tmp = tmp.masked_fill(word_mask[:, :batch_word_pieces_cum_length.size(1), None].eq(False), 0)
- outputs[l_index, :, s_shift:batch_word_pieces_cum_length.size(1) + s_shift] = tmp
- elif self.pool_method == 'max':
- for i in range(batch_size):
- for j in range(seq_len[i]):
- start, end = batch_word_pieces_cum_length[i, j], batch_word_pieces_cum_length[i, j + 1]
- outputs[l_index, i, j + s_shift], _ = torch.max(truncate_output_layer[i, start:end], dim=-2)
- else:
- for i in range(batch_size):
- for j in range(seq_len[i]):
- start, end = batch_word_pieces_cum_length[i, j], batch_word_pieces_cum_length[i, j + 1]
- outputs[l_index, i, j + s_shift] = torch.mean(truncate_output_layer[i, start:end], dim=-2)
- if self.include_cls_sep:
- outputs[l_index, :, 0] = output_layer[:, 0]
- outputs[l_index, batch_indexes, seq_len + s_shift] = output_layer[batch_indexes, word_pieces_lengths + s_shift]
-
- # 3. 最终的embedding结果
- return outputs
-
- def save(self, folder):
- self.tokenzier.save_pretrained(folder)
- self.encoder.save_pretrained(folder)
-
-
- class _WordPieceTransformersModel(nn.Module):
- def __init__(self, model, tokenizer, layers: str = '-1'):
- super().__init__()
-
- self.tokenizer = tokenizer
- self.encoder = model
- self.config = self.encoder.config
- # 检查encoder_layer_number是否合理
- encoder_layer_number = len(self.encoder.encoder.layer)
- self.only_last_layer = True
- if not (isinstance(layers, str) and (layers=='-1' or int(layers)==self.encoder.config.num_hidden_layers)):
- assert self.encoder.config.output_hidden_states == True, \
- f"You have to output all hidden states if you want to" \
- f" access the middle output of `{model.__class__.__name__}` "
- self.only_last_layer = False
-
- if isinstance(layers, list):
- self.layers = [int(l) for l in layers]
- elif isinstance(layers, str):
- self.layers = list(map(int, layers.split(',')))
- else:
- raise TypeError("`layers` only supports str or list[int]")
-
- for layer in self.layers:
- if layer < 0:
- assert -layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \
- f"a RoBERTa model with {encoder_layer_number} layers."
- else:
- assert layer <= encoder_layer_number, f"The layer index:{layer} is out of scope for " \
- f"a RoBERTa model with {encoder_layer_number} layers."
-
- self._cls_index = self.tokenizer.cls_token_id
- self._sep_index = self.tokenizer.sep_token_id
- self._wordpiece_pad_index = self.tokenizer.pad_token_id # 需要用于生成word_piece
- self._wordpiece_unknown_index = self.tokenizer.unk_token_id
-
- def index_datasets(self, *datasets, field_name, **kwargs):
- r"""
- 使用bert的tokenizer新生成word_pieces列加入到datasets中,并将他们设置为input。如果首尾不是
- [CLS]与[SEP]会在首尾额外加入[CLS]与[SEP], 且将word_pieces这一列的pad value设置为了bert的pad value。
-
- :param datasets: DataSet对象
- :param field_name: 基于哪一列index
- :param kwargs: 传递给tokenizer的参数
- :return:
- """
- kwargs['add_special_tokens'] = kwargs.get('add_special_tokens', True)
-
- encode_func = partial(self.tokenizer.encode, **kwargs)
-
- for index, dataset in enumerate(datasets):
- try:
- dataset.apply_field(encode_func, field_name=field_name, new_field_name='word_pieces',
- is_input=True)
- dataset.set_pad_val('word_pieces', self._wordpiece_pad_index)
- except Exception as e:
- logger.error(f"Exception happens when processing the {index} dataset.")
- raise e
-
- def forward(self, word_pieces):
- r"""
-
- :param word_pieces: torch.LongTensor, batch_size x max_len
- :return: num_layers x batch_size x max_len x hidden_size或者num_layers x batch_size x (max_len+2) x hidden_size
- """
- batch_size, max_len = word_pieces.size()
-
- attn_masks = word_pieces.ne(self._wordpiece_pad_index)
- all_outputs = self.encoder(word_pieces, token_type_ids=torch.zeros_like(word_pieces),
- attention_mask=attn_masks)
- if not self.only_last_layer:
- for _ in all_outputs:
- if isinstance(_, (tuple, list)) and len(_)==self.encoder_layer_number:
- roberta_outputs = _
- break
- else:
- roberta_outputs = all_outputs[:1]
- # output_layers = [self.layers] # len(self.layers) x batch_size x max_word_piece_length x hidden_size
- outputs = roberta_outputs[0].new_zeros((len(self.layers), batch_size, max_len, roberta_outputs[0].size(-1)))
- for l_index, l in enumerate(self.layers):
- roberta_output = roberta_outputs[l]
- outputs[l_index] = roberta_output
- return outputs
-
- def save(self, folder):
- self.tokenizer.save_pretrained(folder)
- self.encoder.save_pretrained(folder)
|