Browse Source

修改了 modules 模块的__all__ 和 import

tags/v0.4.10
ChenXin 5 years ago
parent
commit
ff1d695aa4
21 changed files with 321 additions and 236 deletions
  1. +1
    -1
      fastNLP/models/base_model.py
  2. +4
    -4
      fastNLP/models/sequence_labeling.py
  3. +12
    -6
      fastNLP/modules/__init__.py
  4. +2
    -2
      fastNLP/modules/aggregator/__init__.py
  5. +36
    -26
      fastNLP/modules/aggregator/attention.py
  6. +3
    -3
      fastNLP/modules/decoder/__init__.py
  7. +52
    -47
      fastNLP/modules/decoder/crf.py
  8. +15
    -27
      fastNLP/modules/decoder/mlp.py
  9. +14
    -10
      fastNLP/modules/decoder/utils.py
  10. +22
    -4
      fastNLP/modules/encoder/__init__.py
  11. +23
    -9
      fastNLP/modules/encoder/char_encoder.py
  12. +16
    -13
      fastNLP/modules/encoder/conv_maxpool.py
  13. +12
    -7
      fastNLP/modules/encoder/embedding.py
  14. +8
    -2
      fastNLP/modules/encoder/lstm.py
  15. +39
    -32
      fastNLP/modules/encoder/star_transformer.py
  16. +11
    -6
      fastNLP/modules/encoder/transformer.py
  17. +40
    -26
      fastNLP/modules/encoder/variational_rnn.py
  18. +3
    -3
      reproduction/Chinese_word_segmentation/models/cws_model.py
  19. +2
    -2
      reproduction/Chinese_word_segmentation/models/cws_transformer.py
  20. +1
    -1
      reproduction/LSTM+self_attention_sentiment_analysis/main.py
  21. +5
    -5
      test/modules/decoder/test_CRF.py

+ 1
- 1
fastNLP/models/base_model.py View File

@@ -1,6 +1,6 @@
import torch

from ..modules.decoder.MLP import MLP
from ..modules.decoder.mlp import MLP


class BaseModel(torch.nn.Module):


+ 4
- 4
fastNLP/models/sequence_labeling.py View File

@@ -6,7 +6,7 @@ import torch.nn as nn

from .base_model import BaseModel
from ..modules import decoder, encoder
from ..modules.decoder.CRF import allowed_transitions
from ..modules.decoder.crf import allowed_transitions
from ..core.utils import seq_len_to_mask
from ..core.const import Const as C

@@ -35,7 +35,7 @@ class SeqLabeling(BaseModel):
self.Embedding = encoder.embedding.Embedding(init_embed)
self.Rnn = encoder.lstm.LSTM(self.Embedding.embedding_dim, hidden_size)
self.Linear = nn.Linear(hidden_size, num_classes)
self.Crf = decoder.CRF.ConditionalRandomField(num_classes)
self.Crf = decoder.crf.ConditionalRandomField(num_classes)
self.mask = None
def forward(self, words, seq_len, target):
@@ -141,9 +141,9 @@ class AdvSeqLabel(nn.Module):
self.Linear2 = nn.Linear(hidden_size * 2 // 3, num_classes)
if id2words is None:
self.Crf = decoder.CRF.ConditionalRandomField(num_classes, include_start_end_trans=False)
self.Crf = decoder.crf.ConditionalRandomField(num_classes, include_start_end_trans=False)
else:
self.Crf = decoder.CRF.ConditionalRandomField(num_classes, include_start_end_trans=False,
self.Crf = decoder.crf.ConditionalRandomField(num_classes, include_start_end_trans=False,
allowed_transitions=allowed_transitions(id2words,
encoding_type=encoding_type))


+ 12
- 6
fastNLP/modules/__init__.py View File

@@ -32,19 +32,25 @@ from .encoder import *
from .utils import get_embeddings

__all__ = [
"LSTM",
"Embedding",
# "BertModel",
"ConvolutionCharEncoder",
"LSTMCharEncoder",
"ConvMaxpool",
"BertModel",
"Embedding",
"LSTM",
"StarTransformer",
"TransformerEncoder",
"VarRNN",
"VarLSTM",
"VarGRU",
"MaxPool",
"MaxPoolWithMask",
"AvgPool",
"MultiHeadAttention",
"BiAttention",

"MLP",
"ConditionalRandomField",
"viterbi_decode",
"allowed_transitions",
]
]

+ 2
- 2
fastNLP/modules/aggregator/__init__.py View File

@@ -3,12 +3,12 @@ from .pooling import MaxPoolWithMask
from .pooling import AvgPool
from .pooling import AvgPoolWithMask

from .attention import MultiHeadAttention, BiAttention
from .attention import MultiHeadAttention

__all__ = [
"MaxPool",
"MaxPoolWithMask",
"AvgPool",
"MultiHeadAttention",
"BiAttention"
]

+ 36
- 26
fastNLP/modules/aggregator/attention.py View File

@@ -1,4 +1,3 @@
__all__ =["MultiHeadAttention"]
import math

import torch
@@ -9,12 +8,17 @@ from ..dropout import TimestepDropout

from ..utils import initial_parameter

__all__ = [
"MultiHeadAttention"
]


class DotAttention(nn.Module):
"""
.. todo::
补上文档
"""
def __init__(self, key_size, value_size, dropout=0):
super(DotAttention, self).__init__()
self.key_size = key_size
@@ -22,7 +26,7 @@ class DotAttention(nn.Module):
self.scale = math.sqrt(key_size)
self.drop = nn.Dropout(dropout)
self.softmax = nn.Softmax(dim=2)
def forward(self, Q, K, V, mask_out=None):
"""

@@ -41,6 +45,8 @@ class DotAttention(nn.Module):

class MultiHeadAttention(nn.Module):
"""
别名::class:`fastNLP.modules.MultiHeadAttention` :class:`fastNLP.modules.aggregator.attention.MultiHeadAttention`


:param input_size: int, 输入维度的大小。同时也是输出维度的大小。
:param key_size: int, 每个head的维度大小。
@@ -48,13 +54,14 @@ class MultiHeadAttention(nn.Module):
:param num_head: int,head的数量。
:param dropout: float。
"""
def __init__(self, input_size, key_size, value_size, num_head, dropout=0.1):
super(MultiHeadAttention, self).__init__()
self.input_size = input_size
self.key_size = key_size
self.value_size = value_size
self.num_head = num_head
in_size = key_size * num_head
self.q_in = nn.Linear(input_size, in_size)
self.k_in = nn.Linear(input_size, in_size)
@@ -64,14 +71,14 @@ class MultiHeadAttention(nn.Module):
self.out = nn.Linear(value_size * num_head, input_size)
self.drop = TimestepDropout(dropout)
self.reset_parameters()
def reset_parameters(self):
sqrt = math.sqrt
nn.init.normal_(self.q_in.weight, mean=0, std=sqrt(2.0 / (self.input_size + self.key_size)))
nn.init.normal_(self.k_in.weight, mean=0, std=sqrt(2.0 / (self.input_size + self.key_size)))
nn.init.normal_(self.v_in.weight, mean=0, std=sqrt(2.0 / (self.input_size + self.value_size)))
nn.init.xavier_normal_(self.out.weight)
def forward(self, Q, K, V, atte_mask_out=None):
"""

@@ -87,7 +94,7 @@ class MultiHeadAttention(nn.Module):
q = self.q_in(Q).view(batch, sq, n_head, d_k)
k = self.k_in(K).view(batch, sk, n_head, d_k)
v = self.v_in(V).view(batch, sk, n_head, d_v)
# transpose q, k and v to do batch attention
q = q.permute(2, 0, 1, 3).contiguous().view(-1, sq, d_k)
k = k.permute(2, 0, 1, 3).contiguous().view(-1, sk, d_k)
@@ -95,7 +102,7 @@ class MultiHeadAttention(nn.Module):
if atte_mask_out is not None:
atte_mask_out = atte_mask_out.repeat(n_head, 1, 1)
atte = self.attention(q, k, v, atte_mask_out).view(n_head, batch, sq, d_v)
# concat all heads, do output linear
atte = atte.permute(1, 2, 0, 3).contiguous().view(batch, sq, -1)
output = self.drop(self.out(atte))
@@ -104,6 +111,10 @@ class MultiHeadAttention(nn.Module):

class BiAttention(nn.Module):
r"""Bi Attention module
.. todo::
这个模块的负责人来继续完善一下
Calculate Bi Attention matrix `e`
.. math::
@@ -115,11 +126,11 @@ class BiAttention(nn.Module):
\end{array}
"""
def __init__(self):
super(BiAttention, self).__init__()
self.inf = 10e12
def forward(self, in_x1, in_x2, x1_len, x2_len):
"""
:param torch.Tensor in_x1: [batch_size, x1_seq_len, hidden_size] 第一句的特征表示
@@ -130,36 +141,36 @@ class BiAttention(nn.Module):
torch.Tensor out_x2: [batch_size, x2_seq_len, hidden_size] 第一句attend到的特征表示
"""
assert in_x1.size()[0] == in_x2.size()[0]
assert in_x1.size()[2] == in_x2.size()[2]
# The batch size and hidden size must be equal.
assert in_x1.size()[1] == x1_len.size()[1] and in_x2.size()[1] == x2_len.size()[1]
# The seq len in in_x and x_len must be equal.
assert in_x1.size()[0] == x1_len.size()[0] and x1_len.size()[0] == x2_len.size()[0]
batch_size = in_x1.size()[0]
x1_max_len = in_x1.size()[1]
x2_max_len = in_x2.size()[1]
in_x2_t = torch.transpose(in_x2, 1, 2) # [batch_size, hidden_size, x2_seq_len]
attention_matrix = torch.bmm(in_x1, in_x2_t) # [batch_size, x1_seq_len, x2_seq_len]
a_mask = x1_len.le(0.5).float() * -self.inf # [batch_size, x1_seq_len]
a_mask = a_mask.view(batch_size, x1_max_len, -1)
a_mask = a_mask.expand(-1, -1, x2_max_len) # [batch_size, x1_seq_len, x2_seq_len]
b_mask = x2_len.le(0.5).float() * -self.inf
b_mask = b_mask.view(batch_size, -1, x2_max_len)
b_mask = b_mask.expand(-1, x1_max_len, -1) # [batch_size, x1_seq_len, x2_seq_len]
attention_a = F.softmax(attention_matrix + a_mask, dim=2) # [batch_size, x1_seq_len, x2_seq_len]
attention_b = F.softmax(attention_matrix + b_mask, dim=1) # [batch_size, x1_seq_len, x2_seq_len]
out_x1 = torch.bmm(attention_a, in_x2) # [batch_size, x1_seq_len, hidden_size]
attention_b_t = torch.transpose(attention_b, 1, 2)
out_x2 = torch.bmm(attention_b_t, in_x1) # [batch_size, x2_seq_len, hidden_size]
return out_x1, out_x2


@@ -173,10 +184,10 @@ class SelfAttention(nn.Module):
:param float drop: dropout概率,默认值为0.5
:param str initial_method: 初始化参数方法
"""
def __init__(self, input_size, attention_unit=300, attention_hops=10, drop=0.5, initial_method=None,):
def __init__(self, input_size, attention_unit=300, attention_hops=10, drop=0.5, initial_method=None, ):
super(SelfAttention, self).__init__()
self.attention_hops = attention_hops
self.ws1 = nn.Linear(input_size, attention_unit, bias=False)
self.ws2 = nn.Linear(attention_unit, attention_hops, bias=False)
@@ -185,7 +196,7 @@ class SelfAttention(nn.Module):
self.drop = nn.Dropout(drop)
self.tanh = nn.Tanh()
initial_parameter(self, initial_method)
def _penalization(self, attention):
"""
compute the penalization term for attention module
@@ -199,7 +210,7 @@ class SelfAttention(nn.Module):
mat = torch.bmm(attention, attention_t) - self.I[:attention.size(0)]
ret = (torch.sum(torch.sum((mat ** 2), 2), 1).squeeze() + 1e-10) ** 0.5
return torch.sum(ret) / size[0]
def forward(self, input, input_origin):
"""
:param torch.Tensor input: [baz, senLen, h_dim] 要做attention的矩阵
@@ -209,15 +220,14 @@ class SelfAttention(nn.Module):
"""
input = input.contiguous()
size = input.size() # [bsz, len, nhid]
input_origin = input_origin.expand(self.attention_hops, -1, -1) # [hops,baz, len]
input_origin = input_origin.transpose(0, 1).contiguous() # [baz, hops,len]
y1 = self.tanh(self.ws1(self.drop(input))) # [baz,len,dim] -->[bsz,len, attention-unit]
attention = self.ws2(y1).transpose(1, 2).contiguous()
# [bsz,len, attention-unit]--> [bsz, len, hop]--> [baz,hop,len]
attention = attention + (-999999 * (input_origin == 0).float()) # remove the weight on padding token.
attention = F.softmax(attention, 2) # [baz ,hop, len]
return torch.bmm(attention, input), self._penalization(attention) # output1 --> [baz ,hop ,nhid]


+ 3
- 3
fastNLP/modules/decoder/__init__.py View File

@@ -1,7 +1,7 @@
from .CRF import ConditionalRandomField
from .MLP import MLP
from .crf import ConditionalRandomField
from .mlp import MLP
from .utils import viterbi_decode
from .CRF import allowed_transitions
from .crf import allowed_transitions

__all__ = [
"MLP",


fastNLP/modules/decoder/CRF.py → fastNLP/modules/decoder/crf.py View File

@@ -3,10 +3,15 @@ from torch import nn

from ..utils import initial_parameter

__all__ = [
"ConditionalRandomField",
"allowed_transitions"
]


def allowed_transitions(id2target, encoding_type='bio', include_start_end=True):
"""
别名::class:`fastNLP.modules.allowed_transitions` :class:`fastNLP.modules.decoder.CRF.allowed_transitions`
别名::class:`fastNLP.modules.allowed_transitions` :class:`fastNLP.modules.decoder.crf.allowed_transitions`

给定一个id到label的映射表,返回所有可以跳转的(from_tag_id, to_tag_id)列表。

@@ -15,8 +20,7 @@ def allowed_transitions(id2target, encoding_type='bio', include_start_end=True):
:param str encoding_type: 支持"bio", "bmes", "bmeso"。
:param bool include_start_end: 是否包含开始与结尾的转换。比如在bio中,b/o可以在开头,但是i不能在开头;
为True,返回的结果中会包含(start_idx, b_idx), (start_idx, o_idx), 但是不包含(start_idx, i_idx);
start_idx=len(id2label), end_idx=len(id2label)+1。
为False, 返回的结果中不含与开始结尾相关的内容
start_idx=len(id2label), end_idx=len(id2label)+1。为False, 返回的结果中不含与开始结尾相关的内容
:return: List[Tuple(int, int)]], 内部的Tuple是可以进行跳转的(from_tag_id, to_tag_id)。
"""
num_tags = len(id2target)
@@ -27,6 +31,7 @@ def allowed_transitions(id2target, encoding_type='bio', include_start_end=True):
id_label_lst = list(id2target.items())
if include_start_end:
id_label_lst += [(start_idx, 'start'), (end_idx, 'end')]
def split_tag_label(from_label):
from_label = from_label.lower()
if from_label in ['start', 'end']:
@@ -36,7 +41,7 @@ def allowed_transitions(id2target, encoding_type='bio', include_start_end=True):
from_tag = from_label[:1]
from_label = from_label[2:]
return from_tag, from_label
for from_id, from_label in id_label_lst:
if from_label in ['<pad>', '<unk>']:
continue
@@ -60,7 +65,7 @@ def _is_transition_allowed(encoding_type, from_tag, from_label, to_tag, to_label
:param str to_label: 比如"PER", "LOC"等label
:return: bool,能否跃迁
"""
if to_tag=='start' or from_tag=='end':
if to_tag == 'start' or from_tag == 'end':
return False
encoding_type = encoding_type.lower()
if encoding_type == 'bio':
@@ -83,12 +88,12 @@ def _is_transition_allowed(encoding_type, from_tag, from_label, to_tag, to_label
if from_tag == 'start':
return to_tag in ('b', 'o')
elif from_tag in ['b', 'i']:
return any([to_tag in ['end', 'b', 'o'], to_tag=='i' and from_label==to_label])
return any([to_tag in ['end', 'b', 'o'], to_tag == 'i' and from_label == to_label])
elif from_tag == 'o':
return to_tag in ['end', 'b', 'o']
else:
raise ValueError("Unexpect tag {}. Expect only 'B', 'I', 'O'.".format(from_tag))
elif encoding_type == 'bmes':
"""
第一行是to_tag, 第一列是from_tag,y任意条件下可转,-只有在label相同时可转,n不可转
@@ -111,9 +116,9 @@ def _is_transition_allowed(encoding_type, from_tag, from_label, to_tag, to_label
if from_tag == 'start':
return to_tag in ['b', 's']
elif from_tag == 'b':
return to_tag in ['m', 'e'] and from_label==to_label
return to_tag in ['m', 'e'] and from_label == to_label
elif from_tag == 'm':
return to_tag in ['m', 'e'] and from_label==to_label
return to_tag in ['m', 'e'] and from_label == to_label
elif from_tag in ['e', 's']:
return to_tag in ['b', 's', 'end']
else:
@@ -122,21 +127,21 @@ def _is_transition_allowed(encoding_type, from_tag, from_label, to_tag, to_label
if from_tag == 'start':
return to_tag in ['b', 's', 'o']
elif from_tag == 'b':
return to_tag in ['m', 'e'] and from_label==to_label
return to_tag in ['m', 'e'] and from_label == to_label
elif from_tag == 'm':
return to_tag in ['m', 'e'] and from_label==to_label
return to_tag in ['m', 'e'] and from_label == to_label
elif from_tag in ['e', 's', 'o']:
return to_tag in ['b', 's', 'end', 'o']
else:
raise ValueError("Unexpect tag type {}. Expect only 'B', 'M', 'E', 'S', 'O'.".format(from_tag))
else:
raise ValueError("Only support BIO, BMES, BMESO encoding type, got {}.".format(encoding_type))


class ConditionalRandomField(nn.Module):
"""
别名::class:`fastNLP.modules.ConditionalRandomField` :class:`fastNLP.modules.decoder.CRF.ConditionalRandomField`
别名::class:`fastNLP.modules.ConditionalRandomField` :class:`fastNLP.modules.decoder.crf.ConditionalRandomField`

条件随机场。
提供forward()以及viterbi_decode()两个方法,分别用于训练与inference。
@@ -148,30 +153,31 @@ class ConditionalRandomField(nn.Module):
allowed_transitions()函数得到;如果为None,则所有跃迁均为合法
:param str initial_method: 初始化方法。见initial_parameter
"""
def __init__(self, num_tags, include_start_end_trans=False, allowed_transitions=None,
initial_method=None):
super(ConditionalRandomField, self).__init__()
self.include_start_end_trans = include_start_end_trans
self.num_tags = num_tags
# the meaning of entry in this matrix is (from_tag_id, to_tag_id) score
self.trans_m = nn.Parameter(torch.randn(num_tags, num_tags))
if self.include_start_end_trans:
self.start_scores = nn.Parameter(torch.randn(num_tags))
self.end_scores = nn.Parameter(torch.randn(num_tags))
if allowed_transitions is None:
constrain = torch.zeros(num_tags + 2, num_tags + 2)
else:
constrain = torch.full((num_tags+2, num_tags+2), fill_value=-10000.0, dtype=torch.float)
constrain = torch.full((num_tags + 2, num_tags + 2), fill_value=-10000.0, dtype=torch.float)
for from_tag_id, to_tag_id in allowed_transitions:
constrain[from_tag_id, to_tag_id] = 0
self._constrain = nn.Parameter(constrain, requires_grad=False)
initial_parameter(self, initial_method)
def _normalizer_likelihood(self, logits, mask):
"""Computes the (batch_size,) denominator term for the log-likelihood, which is the
sum of the likelihoods across all possible state sequences.
@@ -184,21 +190,21 @@ class ConditionalRandomField(nn.Module):
alpha = logits[0]
if self.include_start_end_trans:
alpha = alpha + self.start_scores.view(1, -1)
flip_mask = mask.eq(0)
for i in range(1, seq_len):
emit_score = logits[i].view(batch_size, 1, n_tags)
trans_score = self.trans_m.view(1, n_tags, n_tags)
tmp = alpha.view(batch_size, n_tags, 1) + emit_score + trans_score
alpha = torch.logsumexp(tmp, 1).masked_fill(flip_mask[i].view(batch_size, 1), 0) + \
alpha.masked_fill(mask[i].byte().view(batch_size, 1), 0)
if self.include_start_end_trans:
alpha = alpha + self.end_scores.view(1, -1)
return torch.logsumexp(alpha, 1)
def _gold_score(self, logits, tags, mask):
"""
Compute the score for the gold path.
@@ -210,15 +216,15 @@ class ConditionalRandomField(nn.Module):
seq_len, batch_size, _ = logits.size()
batch_idx = torch.arange(batch_size, dtype=torch.long, device=logits.device)
seq_idx = torch.arange(seq_len, dtype=torch.long, device=logits.device)
# trans_socre [L-1, B]
mask = mask.byte()
flip_mask = mask.eq(0)
trans_score = self.trans_m[tags[:seq_len-1], tags[1:]].masked_fill(flip_mask[1:, :], 0)
trans_score = self.trans_m[tags[:seq_len - 1], tags[1:]].masked_fill(flip_mask[1:, :], 0)
# emit_score [L, B]
emit_score = logits[seq_idx.view(-1,1), batch_idx.view(1,-1), tags].masked_fill(flip_mask, 0)
emit_score = logits[seq_idx.view(-1, 1), batch_idx.view(1, -1), tags].masked_fill(flip_mask, 0)
# score [L-1, B]
score = trans_score + emit_score[:seq_len-1, :]
score = trans_score + emit_score[:seq_len - 1, :]
score = score.sum(0) + emit_score[-1].masked_fill(flip_mask[-1], 0)
if self.include_start_end_trans:
st_scores = self.start_scores.view(1, -1).repeat(batch_size, 1)[batch_idx, tags[0]]
@@ -227,24 +233,24 @@ class ConditionalRandomField(nn.Module):
score = score + st_scores + ed_scores
# return [B,]
return score
def forward(self, feats, tags, mask):
"""
用于计算CRF的前向loss,返回值为一个batch_size的FloatTensor,可能需要mean()求得loss。

:param torch.FloatTensor feats:batch_size x max_len x num_tags,特征矩阵。
:param torch.FloatTensor feats: batch_size x max_len x num_tags,特征矩阵。
:param torch.LongTensor tags: batch_size x max_len,标签矩阵。
:param torch.ByteTensor mask: batch_size x max_len,为0的位置认为是padding。
:return:torch.FloatTensor, (batch_size,)
:return: torch.FloatTensor, (batch_size,)
"""
feats = feats.transpose(0, 1)
tags = tags.transpose(0, 1).long()
mask = mask.transpose(0, 1).float()
all_path_score = self._normalizer_likelihood(feats, mask)
gold_path_score = self._gold_score(feats, tags, mask)
return all_path_score - gold_path_score
def viterbi_decode(self, logits, mask, unpad=False):
"""给定一个特征矩阵以及转移分数矩阵,计算出最佳的路径以及对应的分数

@@ -259,9 +265,9 @@ class ConditionalRandomField(nn.Module):

"""
batch_size, seq_len, n_tags = logits.size()
logits = logits.transpose(0, 1).data # L, B, H
mask = mask.transpose(0, 1).data.byte() # L, B
logits = logits.transpose(0, 1).data # L, B, H
mask = mask.transpose(0, 1).data.byte() # L, B
# dp
vpath = logits.new_zeros((seq_len, batch_size, n_tags), dtype=torch.long)
vscore = logits[0]
@@ -269,8 +275,8 @@ class ConditionalRandomField(nn.Module):
transitions[:n_tags, :n_tags] += self.trans_m.data
if self.include_start_end_trans:
transitions[n_tags, :n_tags] += self.start_scores.data
transitions[:n_tags, n_tags+1] += self.end_scores.data
transitions[:n_tags, n_tags + 1] += self.end_scores.data
vscore += transitions[n_tags, :n_tags]
trans_score = transitions[:n_tags, :n_tags].view(1, n_tags, n_tags).data
for i in range(1, seq_len):
@@ -280,30 +286,29 @@ class ConditionalRandomField(nn.Module):
best_score, best_dst = score.max(1)
vpath[i] = best_dst
vscore = best_score.masked_fill(mask[i].eq(0).view(batch_size, 1), 0) + \
vscore.masked_fill(mask[i].view(batch_size, 1), 0)
vscore.masked_fill(mask[i].view(batch_size, 1), 0)
if self.include_start_end_trans:
vscore += transitions[:n_tags, n_tags+1].view(1, -1)
vscore += transitions[:n_tags, n_tags + 1].view(1, -1)
# backtrace
batch_idx = torch.arange(batch_size, dtype=torch.long, device=logits.device)
seq_idx = torch.arange(seq_len, dtype=torch.long, device=logits.device)
lens = (mask.long().sum(0) - 1)
# idxes [L, B], batched idx from seq_len-1 to 0
idxes = (lens.view(1,-1) - seq_idx.view(-1,1)) % seq_len
idxes = (lens.view(1, -1) - seq_idx.view(-1, 1)) % seq_len
ans = logits.new_empty((seq_len, batch_size), dtype=torch.long)
ans_score, last_tags = vscore.max(1)
ans[idxes[0], batch_idx] = last_tags
for i in range(seq_len - 1):
last_tags = vpath[idxes[i], batch_idx, last_tags]
ans[idxes[i+1], batch_idx] = last_tags
ans[idxes[i + 1], batch_idx] = last_tags
ans = ans.transpose(0, 1)
if unpad:
paths = []
for idx, seq_len in enumerate(lens):
paths.append(ans[idx, :seq_len+1].tolist())
paths.append(ans[idx, :seq_len + 1].tolist())
else:
paths = ans
return paths, ans_score


fastNLP/modules/decoder/MLP.py → fastNLP/modules/decoder/mlp.py View File

@@ -3,20 +3,23 @@ import torch.nn as nn

from ..utils import initial_parameter

__all__ = [
"MLP"
]


class MLP(nn.Module):
"""
别名::class:`fastNLP.modules.MLP` :class:`fastNLP.modules.decoder.MLP.MLP`
别名::class:`fastNLP.modules.MLP` :class:`fastNLP.modules.decoder.mlp.MLP`

多层感知器

:param list size_layer: 一个int的列表,用来定义MLP的层数,列表中的数字为每一层是hidden数目。MLP的层数为 len(size_layer) - 1
:param str or list activation:
一个字符串或者函数或者字符串跟函数的列表,用来定义每一个隐层的激活函数,字符串包括relu,tanh和sigmoid,默认值为relu
:param str or function output_activation : 字符串或者函数,用来定义输出层的激活函数,默认值为None,表示输出层没有激活函数
:param List[int] size_layer: 一个int的列表,用来定义MLP的层数,列表中的数字为每一层是hidden数目。MLP的层数为 len(size_layer) - 1
:param Union[str,func,List[str]] activation: 一个字符串或者函数的列表,用来定义每一个隐层的激活函数,字符串包括relu,tanh和sigmoid,默认值为relu
:param Union[str,func] output_activation: 字符串或者函数,用来定义输出层的激活函数,默认值为None,表示输出层没有激活函数
:param str initial_method: 参数初始化方式
:param float dropout: dropout概率,默认值为0
.. note::
隐藏层的激活函数通过activation定义。一个str/function或者一个str/function的list可以被传入activation。
如果只传入了一个str/function,那么所有隐藏层的激活函数都由这个str/function定义;
@@ -35,10 +38,8 @@ class MLP(nn.Module):
>>> y = net(x)
>>> print(x)
>>> print(y)
>>>

"""
def __init__(self, size_layer, activation='relu', output_activation=None, initial_method=None, dropout=0.0):
super(MLP, self).__init__()
self.hiddens = nn.ModuleList()
@@ -46,12 +47,12 @@ class MLP(nn.Module):
self.output_activation = output_activation
for i in range(1, len(size_layer)):
if i + 1 == len(size_layer):
self.output = nn.Linear(size_layer[i-1], size_layer[i])
self.output = nn.Linear(size_layer[i - 1], size_layer[i])
else:
self.hiddens.append(nn.Linear(size_layer[i-1], size_layer[i]))
self.hiddens.append(nn.Linear(size_layer[i - 1], size_layer[i]))
self.dropout = nn.Dropout(p=dropout)
actives = {
'relu': nn.ReLU(),
'tanh': nn.Tanh(),
@@ -80,7 +81,7 @@ class MLP(nn.Module):
else:
raise ValueError("should set activation correctly: {}".format(activation))
initial_parameter(self, initial_method)
def forward(self, x):
"""
:param torch.Tensor x: MLP接受的输入
@@ -93,16 +94,3 @@ class MLP(nn.Module):
x = self.output_activation(x)
x = self.dropout(x)
return x


if __name__ == '__main__':
net1 = MLP([5, 10, 5])
net2 = MLP([5, 10, 5], 'tanh')
net3 = MLP([5, 6, 7, 8, 5], 'tanh')
net4 = MLP([5, 6, 7, 8, 5], 'relu', output_activation='tanh')
net5 = MLP([5, 6, 7, 8, 5], ['tanh', 'relu', 'tanh'], 'tanh')
for net in [net1, net2, net3, net4, net5]:
x = torch.randn(5, 5)
y = net(x)
print(x)
print(y)

+ 14
- 10
fastNLP/modules/decoder/utils.py View File

@@ -1,10 +1,13 @@
__all__ = ["viterbi_decode"]
import torch

__all__ = [
"viterbi_decode"
]


def viterbi_decode(logits, transitions, mask=None, unpad=False):
"""
别名::class:`fastNLP.modules.viterbi_decode` :class:`fastNLP.modules.decoder.utils.viterbi_decode
r"""
别名::class:`fastNLP.modules.viterbi_decode` :class:`fastNLP.modules.decoder.utils.viterbi_decode`

给定一个特征矩阵以及转移分数矩阵,计算出最佳的路径以及对应的分数

@@ -20,18 +23,19 @@ def viterbi_decode(logits, transitions, mask=None, unpad=False):

"""
batch_size, seq_len, n_tags = logits.size()
assert n_tags==transitions.size(0) and n_tags==transitions.size(1), "The shapes of transitions and feats are not " \
"compatible."
assert n_tags == transitions.size(0) and n_tags == transitions.size(
1), "The shapes of transitions and feats are not " \
"compatible."
logits = logits.transpose(0, 1).data # L, B, H
if mask is not None:
mask = mask.transpose(0, 1).data.byte() # L, B
else:
mask = logits.new_ones((seq_len, batch_size), dtype=torch.uint8)
# dp
vpath = logits.new_zeros((seq_len, batch_size, n_tags), dtype=torch.long)
vscore = logits[0]
trans_score = transitions.view(1, n_tags, n_tags).data
for i in range(1, seq_len):
prev_score = vscore.view(batch_size, n_tags, 1)
@@ -41,14 +45,14 @@ def viterbi_decode(logits, transitions, mask=None, unpad=False):
vpath[i] = best_dst
vscore = best_score.masked_fill(mask[i].eq(0).view(batch_size, 1), 0) + \
vscore.masked_fill(mask[i].view(batch_size, 1), 0)
# backtrace
batch_idx = torch.arange(batch_size, dtype=torch.long, device=logits.device)
seq_idx = torch.arange(seq_len, dtype=torch.long, device=logits.device)
lens = (mask.long().sum(0) - 1)
# idxes [L, B], batched idx from seq_len-1 to 0
idxes = (lens.view(1, -1) - seq_idx.view(-1, 1)) % seq_len
ans = logits.new_empty((seq_len, batch_size), dtype=torch.long)
ans_score, last_tags = vscore.max(1)
ans[idxes[0], batch_idx] = last_tags
@@ -62,4 +66,4 @@ def viterbi_decode(logits, transitions, mask=None, unpad=False):
paths.append(ans[idx, :seq_len + 1].tolist())
else:
paths = ans
return paths, ans_score
return paths, ans_score

+ 22
- 4
fastNLP/modules/encoder/__init__.py View File

@@ -1,11 +1,29 @@
from .bert import BertModel
from .char_encoder import ConvolutionCharEncoder, LSTMCharEncoder
from .conv_maxpool import ConvMaxpool
from .embedding import Embedding
from .lstm import LSTM
from .bert import BertModel
from .star_transformer import StarTransformer
from .transformer import TransformerEncoder
from .variational_rnn import VarRNN, VarLSTM, VarGRU

__all__ = [
"LSTM",
"Embedding",
# "BertModel",
"ConvolutionCharEncoder",
"LSTMCharEncoder",
"ConvMaxpool",
"BertModel"
"Embedding",
"LSTM",
"StarTransformer",
"TransformerEncoder",
"VarRNN",
"VarLSTM",
"VarGRU"
]

+ 23
- 9
fastNLP/modules/encoder/char_encoder.py View File

@@ -1,8 +1,13 @@
import torch
from torch import nn
import torch.nn as nn

from ..utils import initial_parameter

__all__ = [
"ConvolutionCharEncoder",
"LSTMCharEncoder"
]


# from torch.nn.init import xavier_uniform
class ConvolutionCharEncoder(nn.Module):
@@ -10,20 +15,22 @@ class ConvolutionCharEncoder(nn.Module):
别名::class:`fastNLP.modules.ConvolutionCharEncoder` :class:`fastNLP.modules.encoder.char_encoder.ConvolutionCharEncoder`

char级别的卷积编码器.
:param int char_emb_size: char级别embedding的维度. Default: 50
例: 有26个字符, 每一个的embedding是一个50维的向量, 所以输入的向量维度为50.
:例: 有26个字符, 每一个的embedding是一个50维的向量, 所以输入的向量维度为50.
:param tuple feature_maps: 一个由int组成的tuple. tuple的长度是char级别卷积操作的数目, 第`i`个int表示第`i`个卷积操作的filter.
:param tuple kernels: 一个由int组成的tuple. tuple的长度是char级别卷积操作的数目, 第`i`个int表示第`i`个卷积操作的卷积核.
:param initial_method: 初始化参数的方式, 默认为`xavier normal`
"""
def __init__(self, char_emb_size=50, feature_maps=(40, 30, 30), kernels=(3, 4, 5), initial_method=None):
super(ConvolutionCharEncoder, self).__init__()
self.convs = nn.ModuleList([
nn.Conv2d(1, feature_maps[i], kernel_size=(char_emb_size, kernels[i]), bias=True, padding=(0, 4))
for i in range(len(kernels))])
initial_parameter(self, initial_method)
def forward(self, x):
"""
:param torch.Tensor x: ``[batch_size * sent_length, word_length, char_emb_size]`` 输入字符的embedding
@@ -34,7 +41,7 @@ class ConvolutionCharEncoder(nn.Module):
x = x.transpose(2, 3)
# [batch_size*sent_length, channel, height, width]
return self._convolute(x).unsqueeze(2)
def _convolute(self, x):
feats = []
for conv in self.convs:
@@ -50,7 +57,14 @@ class ConvolutionCharEncoder(nn.Module):


class LSTMCharEncoder(nn.Module):
"""char级别基于LSTM的encoder."""
"""
别名::class:`fastNLP.modules.LSTMCharEncoder` :class:`fastNLP.modules.encoder.char_encoder.LSTMCharEncoder`

char级别基于LSTM的encoder.
"""
def __init__(self, char_emb_size=50, hidden_size=None, initial_method=None):
"""
:param int char_emb_size: char级别embedding的维度. Default: 50
@@ -60,14 +74,14 @@ class LSTMCharEncoder(nn.Module):
"""
super(LSTMCharEncoder, self).__init__()
self.hidden_size = char_emb_size if hidden_size is None else hidden_size
self.lstm = nn.LSTM(input_size=char_emb_size,
hidden_size=self.hidden_size,
num_layers=1,
bias=True,
batch_first=True)
initial_parameter(self, initial_method)
def forward(self, x):
"""
:param torch.Tensor x: ``[ n_batch*n_word, word_length, char_emb_size]`` 输入字符的embedding
@@ -78,6 +92,6 @@ class LSTMCharEncoder(nn.Module):
h0 = nn.init.orthogonal_(h0)
c0 = torch.empty(1, batch_size, self.hidden_size)
c0 = nn.init.orthogonal_(c0)
_, hidden = self.lstm(x, (h0, c0))
return hidden[0].squeeze().unsqueeze(2)

+ 16
- 13
fastNLP/modules/encoder/conv_maxpool.py View File

@@ -1,12 +1,13 @@
# python: 3.6
# encoding: utf-8

import torch
import torch.nn as nn
import torch.nn.functional as F

from ..utils import initial_parameter

__all__ = [
"ConvMaxpool"
]


class ConvMaxpool(nn.Module):
"""
@@ -27,22 +28,24 @@ class ConvMaxpool(nn.Module):
:param str activation: Convolution后的结果将通过该activation后再经过max-pooling。支持relu, sigmoid, tanh
:param str initial_method: str。
"""
def __init__(self, in_channels, out_channels, kernel_sizes,
stride=1, padding=0, dilation=1,
groups=1, bias=True, activation="relu", initial_method=None):
super(ConvMaxpool, self).__init__()
# convolution
if isinstance(kernel_sizes, (list, tuple, int)):
if isinstance(kernel_sizes, int) and isinstance(out_channels, int):
out_channels = [out_channels]
kernel_sizes = [kernel_sizes]
elif isinstance(kernel_sizes, (tuple, list)) and isinstance(out_channels, (tuple, list)):
assert len(out_channels)==len(kernel_sizes), "The number of out_channels should be equal to the number" \
" of kernel_sizes."
assert len(out_channels) == len(
kernel_sizes), "The number of out_channels should be equal to the number" \
" of kernel_sizes."
else:
raise ValueError("The type of out_channels and kernel_sizes should be the same.")
self.convs = nn.ModuleList([nn.Conv1d(
in_channels=in_channels,
out_channels=oc,
@@ -53,11 +56,11 @@ class ConvMaxpool(nn.Module):
groups=groups,
bias=bias)
for oc, ks in zip(out_channels, kernel_sizes)])
else:
raise Exception(
'Incorrect kernel sizes: should be list, tuple or int')
# activation function
if activation == 'relu':
self.activation = F.relu
@@ -68,9 +71,9 @@ class ConvMaxpool(nn.Module):
else:
raise Exception(
"Undefined activation function: choose from: relu, tanh, sigmoid")
initial_parameter(self, initial_method)
def forward(self, x, mask=None):
"""

@@ -83,9 +86,9 @@ class ConvMaxpool(nn.Module):
# convolution
xs = [self.activation(conv(x)) for conv in self.convs] # [[N,C,L], ...]
if mask is not None:
mask = mask.unsqueeze(1) # B x 1 x L
mask = mask.unsqueeze(1) # B x 1 x L
xs = [x.masked_fill_(mask, float('-inf')) for x in xs]
# max-pooling
xs = [F.max_pool1d(input=i, kernel_size=i.size(2)).squeeze(2)
for i in xs] # [[N, C], ...]
return torch.cat(xs, dim=-1) # [N, C]
return torch.cat(xs, dim=-1) # [N, C]

+ 12
- 7
fastNLP/modules/encoder/embedding.py View File

@@ -1,14 +1,19 @@
import torch.nn as nn
from ..utils import get_embeddings

__all__ = [
"Embedding"
]


class Embedding(nn.Embedding):
"""
别名::class:`fastNLP.modules.Embedding` :class:`fastNLP.modules.encoder.embedding.Embedding`

Embedding组件. 可以通过self.num_embeddings获取词表大小; self.embedding_dim获取embedding的维度"""
def __init__(self, init_embed, padding_idx=None, dropout=0.0, sparse=False, max_norm=None, norm_type=2,
scale_grad_by_freq=False):
scale_grad_by_freq=False):
"""

:param tuple(int,int),torch.FloatTensor,nn.Embedding,numpy.ndarray init_embed: Embedding的大小(传入tuple(int, int),
@@ -22,14 +27,14 @@ class Embedding(nn.Embedding):
"""
embed = get_embeddings(init_embed)
num_embeddings, embedding_dim = embed.weight.size()
super().__init__(num_embeddings, embedding_dim, padding_idx=padding_idx,
max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse, _weight=embed.weight.data)
max_norm=max_norm, norm_type=norm_type, scale_grad_by_freq=scale_grad_by_freq,
sparse=sparse, _weight=embed.weight.data)
del embed
self.dropout = nn.Dropout(dropout)
def forward(self, x):
"""
:param torch.LongTensor x: [batch, seq_len]


+ 8
- 2
fastNLP/modules/encoder/lstm.py View File

@@ -1,4 +1,5 @@
"""轻量封装的 Pytorch LSTM 模块.
"""
轻量封装的 Pytorch LSTM 模块.
可在 forward 时传入序列的长度, 自动对padding做合适的处理.
"""
import torch
@@ -7,6 +8,10 @@ import torch.nn.utils.rnn as rnn

from ..utils import initial_parameter

__all__ = [
"LSTM"
]


class LSTM(nn.Module):
"""
@@ -23,6 +28,7 @@ class LSTM(nn.Module):
:(batch, seq, feature). Default: ``False``
:param bias: 如果为 ``False``, 模型将不会使用bias. Default: ``True``
"""
def __init__(self, input_size, hidden_size=100, num_layers=1, dropout=0.0, batch_first=True,
bidirectional=False, bias=True, initial_method=None):
super(LSTM, self).__init__()
@@ -30,7 +36,7 @@ class LSTM(nn.Module):
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, bias=bias, batch_first=batch_first,
dropout=dropout, bidirectional=bidirectional)
initial_parameter(self, initial_method)
def forward(self, x, seq_len=None, h0=None, c0=None):
"""



+ 39
- 32
fastNLP/modules/encoder/star_transformer.py View File

@@ -1,9 +1,14 @@
"""Star-Transformer 的encoder部分的 Pytorch 实现
"""
Star-Transformer 的encoder部分的 Pytorch 实现
"""
import numpy as NP
import torch
from torch import nn
from torch.nn import functional as F
import numpy as NP

__all__ = [
"StarTransformer"
]


class StarTransformer(nn.Module):
@@ -24,10 +29,11 @@ class StarTransformer(nn.Module):
模型会为输入序列加上position embedding。
若为`None`,忽略加上position embedding的步骤. Default: `None`
"""
def __init__(self, hidden_size, num_layers, num_head, head_dim, dropout=0.1, max_len=None):
super(StarTransformer, self).__init__()
self.iters = num_layers
self.norm = nn.ModuleList([nn.LayerNorm(hidden_size) for _ in range(self.iters)])
self.ring_att = nn.ModuleList(
[_MSA1(hidden_size, nhead=num_head, head_dim=head_dim, dropout=dropout)
@@ -35,12 +41,12 @@ class StarTransformer(nn.Module):
self.star_att = nn.ModuleList(
[_MSA2(hidden_size, nhead=num_head, head_dim=head_dim, dropout=dropout)
for _ in range(self.iters)])
if max_len is not None:
self.pos_emb = self.pos_emb = nn.Embedding(max_len, hidden_size)
else:
self.pos_emb = None
def forward(self, data, mask):
"""
:param FloatTensor data: [batch, length, hidden] 输入的序列
@@ -50,20 +56,21 @@ class StarTransformer(nn.Module):

[batch, hidden] 全局 relay 节点, 详见论文
"""
def norm_func(f, x):
# B, H, L, 1
return f(x.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
B, L, H = data.size()
mask = (mask == 0) # flip the mask for masked_fill_
mask = (mask == 0) # flip the mask for masked_fill_
smask = torch.cat([torch.zeros(B, 1, ).byte().to(mask), mask], 1)
embs = data.permute(0, 2, 1)[:,:,:,None] # B H L 1
embs = data.permute(0, 2, 1)[:, :, :, None] # B H L 1
if self.pos_emb:
P = self.pos_emb(torch.arange(L, dtype=torch.long, device=embs.device)\
.view(1, L)).permute(0, 2, 1).contiguous()[:, :, :, None] # 1 H L 1
P = self.pos_emb(torch.arange(L, dtype=torch.long, device=embs.device) \
.view(1, L)).permute(0, 2, 1).contiguous()[:, :, :, None] # 1 H L 1
embs = embs + P
nodes = embs
relay = embs.mean(2, keepdim=True)
ex_mask = mask[:, None, :, None].expand(B, H, L, 1)
@@ -72,11 +79,11 @@ class StarTransformer(nn.Module):
ax = torch.cat([r_embs, relay.expand(B, H, 1, L)], 2)
nodes = nodes + F.leaky_relu(self.ring_att[i](norm_func(self.norm[i], nodes), ax=ax))
relay = F.leaky_relu(self.star_att[i](relay, torch.cat([relay, nodes], 2), smask))
nodes = nodes.masked_fill_(ex_mask, 0)
nodes = nodes.view(B, H, L).permute(0, 2, 1)
return nodes, relay.view(B, H)


@@ -89,37 +96,37 @@ class _MSA1(nn.Module):
self.WK = nn.Conv2d(nhid, nhead * head_dim, 1)
self.WV = nn.Conv2d(nhid, nhead * head_dim, 1)
self.WO = nn.Conv2d(nhead * head_dim, nhid, 1)
self.drop = nn.Dropout(dropout)
# print('NUM_HEAD', nhead, 'DIM_HEAD', head_dim)
self.nhid, self.nhead, self.head_dim, self.unfold_size = nhid, nhead, head_dim, 3
def forward(self, x, ax=None):
# x: B, H, L, 1, ax : B, H, X, L append features
nhid, nhead, head_dim, unfold_size = self.nhid, self.nhead, self.head_dim, self.unfold_size
B, H, L, _ = x.shape
q, k, v = self.WQ(x), self.WK(x), self.WV(x) # x: (B,H,L,1)
if ax is not None:
aL = ax.shape[2]
ak = self.WK(ax).view(B, nhead, head_dim, aL, L)
av = self.WV(ax).view(B, nhead, head_dim, aL, L)
q = q.view(B, nhead, head_dim, 1, L)
k = F.unfold(k.view(B, nhead * head_dim, L, 1), (unfold_size, 1), padding=(unfold_size // 2, 0))\
.view(B, nhead, head_dim, unfold_size, L)
v = F.unfold(v.view(B, nhead * head_dim, L, 1), (unfold_size, 1), padding=(unfold_size // 2, 0))\
.view(B, nhead, head_dim, unfold_size, L)
k = F.unfold(k.view(B, nhead * head_dim, L, 1), (unfold_size, 1), padding=(unfold_size // 2, 0)) \
.view(B, nhead, head_dim, unfold_size, L)
v = F.unfold(v.view(B, nhead * head_dim, L, 1), (unfold_size, 1), padding=(unfold_size // 2, 0)) \
.view(B, nhead, head_dim, unfold_size, L)
if ax is not None:
k = torch.cat([k, ak], 3)
v = torch.cat([v, av], 3)
alphas = self.drop(F.softmax((q * k).sum(2, keepdim=True) / NP.sqrt(head_dim), 3)) # B N L 1 U
att = (alphas * v).sum(3).view(B, nhead * head_dim, L, 1)
ret = self.WO(att)
return ret


@@ -131,19 +138,19 @@ class _MSA2(nn.Module):
self.WK = nn.Conv2d(nhid, nhead * head_dim, 1)
self.WV = nn.Conv2d(nhid, nhead * head_dim, 1)
self.WO = nn.Conv2d(nhead * head_dim, nhid, 1)
self.drop = nn.Dropout(dropout)
# print('NUM_HEAD', nhead, 'DIM_HEAD', head_dim)
self.nhid, self.nhead, self.head_dim, self.unfold_size = nhid, nhead, head_dim, 3
def forward(self, x, y, mask=None):
# x: B, H, 1, 1, 1 y: B H L 1
nhid, nhead, head_dim, unfold_size = self.nhid, self.nhead, self.head_dim, self.unfold_size
B, H, L, _ = y.shape
q, k, v = self.WQ(x), self.WK(y), self.WV(y)
q = q.view(B, nhead, 1, head_dim) # B, H, 1, 1 -> B, N, 1, h
k = k.view(B, nhead, head_dim, L) # B, H, L, 1 -> B, N, h, L
v = v.view(B, nhead, head_dim, L).permute(0, 1, 3, 2) # B, H, L, 1 -> B, N, L, h


+ 11
- 6
fastNLP/modules/encoder/transformer.py View File

@@ -3,6 +3,10 @@ from torch import nn
from ..aggregator.attention import MultiHeadAttention
from ..dropout import TimestepDropout

__all__ = [
"TransformerEncoder"
]


class TransformerEncoder(nn.Module):
"""
@@ -19,6 +23,7 @@ class TransformerEncoder(nn.Module):
:param int num_head: head的数量。
:param float dropout: dropout概率. Default: 0.1
"""
class SubLayer(nn.Module):
def __init__(self, model_size, inner_size, key_size, value_size, num_head, dropout=0.1):
super(TransformerEncoder.SubLayer, self).__init__()
@@ -27,9 +32,9 @@ class TransformerEncoder(nn.Module):
self.ffn = nn.Sequential(nn.Linear(model_size, inner_size),
nn.ReLU(),
nn.Linear(inner_size, model_size),
TimestepDropout(dropout),)
TimestepDropout(dropout), )
self.norm2 = nn.LayerNorm(model_size)
def forward(self, input, seq_mask=None, atte_mask_out=None):
"""

@@ -44,11 +49,11 @@ class TransformerEncoder(nn.Module):
output = self.norm2(output + norm_atte)
output *= seq_mask
return output
def __init__(self, num_layers, **kargs):
super(TransformerEncoder, self).__init__()
self.layers = nn.ModuleList([self.SubLayer(**kargs) for _ in range(num_layers)])
def forward(self, x, seq_mask=None):
"""
:param x: [batch, seq_len, model_size] 输入序列
@@ -60,8 +65,8 @@ class TransformerEncoder(nn.Module):
if seq_mask is None:
atte_mask_out = None
else:
atte_mask_out = (seq_mask < 1)[:,None,:]
seq_mask = seq_mask[:,:,None]
atte_mask_out = (seq_mask < 1)[:, None, :]
seq_mask = seq_mask[:, :, None]
for layer in self.layers:
output = layer(output, seq_mask, atte_mask_out)
return output

+ 40
- 26
fastNLP/modules/encoder/variational_rnn.py View File

@@ -1,9 +1,9 @@
"""Variational RNN 的 Pytorch 实现
"""
Variational RNN 的 Pytorch 实现
"""
import torch
import torch.nn as nn
from torch.nn.utils.rnn import PackedSequence, pack_padded_sequence, pad_packed_sequence
from ..utils import initial_parameter

try:
from torch import flip
@@ -14,18 +14,27 @@ except ImportError:
indices[dim] = torch.arange(x.size(dim) - 1, -1, -1, dtype=torch.long, device=x.device)
return x[tuple(indices)]

from ..utils import initial_parameter

__all__ = [
"VarRNN",
"VarLSTM",
"VarGRU"
]


class VarRnnCellWrapper(nn.Module):
"""Wrapper for normal RNN Cells, make it support variational dropout
"""

Wrapper for normal RNN Cells, make it support variational dropout
"""
def __init__(self, cell, hidden_size, input_p, hidden_p):
super(VarRnnCellWrapper, self).__init__()
self.cell = cell
self.hidden_size = hidden_size
self.input_p = input_p
self.hidden_p = hidden_p
def forward(self, input_x, hidden, mask_x, mask_h, is_reversed=False):
"""
:param PackedSequence input_x: [seq_len, batch_size, input_size]
@@ -37,11 +46,13 @@ class VarRnnCellWrapper(nn.Module):
hidden: for LSTM, tuple of (h_n, c_n), [batch_size, hidden_size]
for other RNN, h_n, [batch_size, hidden_size]
"""
def get_hi(hi, h0, size):
h0_size = size - hi.size(0)
if h0_size > 0:
return torch.cat([hi, h0[:h0_size]], dim=0)
return hi[:size]
is_lstm = isinstance(hidden, tuple)
input, batch_sizes = input_x.data, input_x.batch_sizes
output = []
@@ -52,7 +63,7 @@ class VarRnnCellWrapper(nn.Module):
else:
batch_iter = batch_sizes
idx = 0
if is_lstm:
hn = (hidden[0].clone(), hidden[1].clone())
else:
@@ -60,10 +71,10 @@ class VarRnnCellWrapper(nn.Module):
hi = hidden
for size in batch_iter:
if is_reversed:
input_i = input[idx-size: idx] * mask_x[:size]
input_i = input[idx - size: idx] * mask_x[:size]
idx -= size
else:
input_i = input[idx: idx+size] * mask_x[:size]
input_i = input[idx: idx + size] * mask_x[:size]
idx += size
mask_hi = mask_h[:size]
if is_lstm:
@@ -78,7 +89,7 @@ class VarRnnCellWrapper(nn.Module):
hi = cell(input_i, hi)
hn[:size] = hi
output.append(hi)
if is_reversed:
output = list(reversed(output))
output = torch.cat(output, dim=0)
@@ -86,7 +97,9 @@ class VarRnnCellWrapper(nn.Module):


class VarRNNBase(nn.Module):
"""Variational Dropout RNN 实现.
"""
Variational Dropout RNN 实现.
论文参考: `A Theoretically Grounded Application of Dropout in Recurrent Neural Networks (Yarin Gal and Zoubin Ghahramani, 2016)
https://arxiv.org/abs/1512.05287`.

@@ -102,7 +115,7 @@ class VarRNNBase(nn.Module):
:param hidden_dropout: 对每个隐状态的dropout概率. Default: 0
:param bidirectional: 若为 ``True``, 使用双向的RNN. Default: ``False``
"""
def __init__(self, mode, Cell, input_size, hidden_size, num_layers=1,
bias=True, batch_first=False,
input_dropout=0, hidden_dropout=0, bidirectional=False):
@@ -125,7 +138,7 @@ class VarRNNBase(nn.Module):
self._all_cells.append(VarRnnCellWrapper(cell, self.hidden_size, input_dropout, hidden_dropout))
initial_parameter(self)
self.is_lstm = (self.mode == "LSTM")
def _forward_one(self, n_layer, n_direction, input, hx, mask_x, mask_h):
is_lstm = self.is_lstm
idx = self.num_directions * n_layer + n_direction
@@ -133,7 +146,7 @@ class VarRNNBase(nn.Module):
hi = (hx[0][idx], hx[1][idx]) if is_lstm else hx[idx]
output_x, hidden_x = cell(input, hi, mask_x, mask_h, is_reversed=(n_direction == 1))
return output_x, hidden_x
def forward(self, x, hx=None):
"""

@@ -152,19 +165,19 @@ class VarRNNBase(nn.Module):
else:
max_batch_size = int(input.batch_sizes[0])
input, batch_sizes = input.data, input.batch_sizes
if hx is None:
hx = x.new_zeros(self.num_layers * self.num_directions,
max_batch_size, self.hidden_size, requires_grad=True)
if is_lstm:
hx = (hx, hx.new_zeros(hx.size(), requires_grad=True))
mask_x = x.new_ones((max_batch_size, self.input_size))
mask_out = x.new_ones((max_batch_size, self.hidden_size * self.num_directions))
mask_h_ones = x.new_ones((max_batch_size, self.hidden_size))
nn.functional.dropout(mask_x, p=self.input_dropout, training=self.training, inplace=True)
nn.functional.dropout(mask_out, p=self.hidden_dropout, training=self.training, inplace=True)
hidden = x.new_zeros((self.num_layers * self.num_directions, max_batch_size, self.hidden_size))
if is_lstm:
cellstate = x.new_zeros((self.num_layers * self.num_directions, max_batch_size, self.hidden_size))
@@ -183,18 +196,19 @@ class VarRNNBase(nn.Module):
else:
hidden[idx] = hidden_x
x = torch.cat(output_list, dim=-1)
if is_lstm:
hidden = (hidden, cellstate)
if is_packed:
output = PackedSequence(x, batch_sizes)
else:
x = PackedSequence(x, batch_sizes)
output, _ = pad_packed_sequence(x, batch_first=self.batch_first)
return output, hidden


class VarLSTM(VarRNNBase):
"""
别名::class:`fastNLP.modules.VarLSTM` :class:`fastNLP.modules.encoder.variational_rnn.VarLSTM`
@@ -211,10 +225,10 @@ class VarLSTM(VarRNNBase):
:param hidden_dropout: 对每个隐状态的dropout概率. Default: 0
:param bidirectional: 若为 ``True``, 使用双向的LSTM. Default: ``False``
"""
def __init__(self, *args, **kwargs):
super(VarLSTM, self).__init__(mode="LSTM", Cell=nn.LSTMCell, *args, **kwargs)
def forward(self, x, hx=None):
return super(VarLSTM, self).forward(x, hx)

@@ -235,13 +249,14 @@ class VarRNN(VarRNNBase):
:param hidden_dropout: 对每个隐状态的dropout概率. Default: 0
:param bidirectional: 若为 ``True``, 使用双向的RNN. Default: ``False``
"""
def __init__(self, *args, **kwargs):
super(VarRNN, self).__init__(mode="RNN", Cell=nn.RNNCell, *args, **kwargs)
def forward(self, x, hx=None):
return super(VarRNN, self).forward(x, hx)


class VarGRU(VarRNNBase):
"""
别名::class:`fastNLP.modules.VarGRU` :class:`fastNLP.modules.encoder.variational_rnn.VarGRU`
@@ -258,10 +273,9 @@ class VarGRU(VarRNNBase):
:param hidden_dropout: 对每个隐状态的dropout概率. Default: 0
:param bidirectional: 若为 ``True``, 使用双向的GRU. Default: ``False``
"""
def __init__(self, *args, **kwargs):
super(VarGRU, self).__init__(mode="GRU", Cell=nn.GRUCell, *args, **kwargs)
def forward(self, x, hx=None):
return super(VarGRU, self).forward(x, hx)


+ 3
- 3
reproduction/Chinese_word_segmentation/models/cws_model.py View File

@@ -3,7 +3,7 @@ import torch
from torch import nn

from fastNLP.models.base_model import BaseModel
from fastNLP.modules.decoder.MLP import MLP
from fastNLP.modules.decoder.mlp import MLP
from reproduction.Chinese_word_segmentation.utils import seq_lens_to_mask


@@ -120,8 +120,8 @@ class CWSBiLSTMSegApp(BaseModel):
return {'pred_tags': pred_tags}


from fastNLP.modules.decoder.CRF import ConditionalRandomField
from fastNLP.modules.decoder.CRF import allowed_transitions
from fastNLP.modules.decoder.crf import ConditionalRandomField
from fastNLP.modules.decoder.crf import allowed_transitions

class CWSBiLSTMCRF(BaseModel):
def __init__(self, vocab_num, embed_dim=100, bigram_vocab_num=None, bigram_embed_dim=100, num_bigram_per_char=None,


+ 2
- 2
reproduction/Chinese_word_segmentation/models/cws_transformer.py View File

@@ -10,8 +10,8 @@ from torch import nn
import torch
# from fastNLP.modules.encoder.transformer import TransformerEncoder
from reproduction.Chinese_word_segmentation.models.transformer import TransformerEncoder
from fastNLP.modules.decoder.CRF import ConditionalRandomField,seq_len_to_byte_mask
from fastNLP.modules.decoder.CRF import allowed_transitions
from fastNLP.modules.decoder.crf import ConditionalRandomField,seq_len_to_byte_mask
from fastNLP.modules.decoder.crf import allowed_transitions

class TransformerCWS(nn.Module):
def __init__(self, vocab_num, embed_dim=100, bigram_vocab_num=None, bigram_embed_dim=100, num_bigram_per_char=None,


+ 1
- 1
reproduction/LSTM+self_attention_sentiment_analysis/main.py View File

@@ -7,7 +7,7 @@ from fastNLP.io.config_io import ConfigSection
from fastNLP.io.dataset_loader import DummyClassificationReader as Dataset_loader
from fastNLP.models.base_model import BaseModel
from fastNLP.modules.aggregator.self_attention import SelfAttention
from fastNLP.modules.decoder.MLP import MLP
from fastNLP.modules.decoder.mlp import MLP
from fastNLP.modules.encoder.embedding import Embedding as Embedding
from fastNLP.modules.encoder.lstm import LSTM



+ 5
- 5
test/modules/decoder/test_CRF.py View File

@@ -5,7 +5,7 @@ import unittest
class TestCRF(unittest.TestCase):
def test_case1(self):
# 检查allowed_transitions()能否正确使用
from fastNLP.modules.decoder.CRF import allowed_transitions
from fastNLP.modules.decoder.crf import allowed_transitions

id2label = {0: 'B', 1: 'I', 2:'O'}
expected_res = {(0, 0), (0, 1), (0, 2), (0, 4), (1, 0), (1, 1), (1, 2), (1, 4), (2, 0), (2, 2),
@@ -43,7 +43,7 @@ class TestCRF(unittest.TestCase):
# 测试CRF能否避免解码出非法跃迁, 使用allennlp做了验证。
pass
# import torch
# from fastNLP.modules.decoder.CRF import seq_len_to_byte_mask
# from fastNLP.modules.decoder.crf import seq_len_to_byte_mask
#
# labels = ['O']
# for label in ['X', 'Y']:
@@ -63,7 +63,7 @@ class TestCRF(unittest.TestCase):
# mask = seq_len_to_byte_mask(seq_lens)
# allen_res = allen_CRF.viterbi_tags(logits, mask)
#
# from fastNLP.modules.decoder.CRF import ConditionalRandomField, allowed_transitions
# from fastNLP.modules.decoder.crf import ConditionalRandomField, allowed_transitions
# fast_CRF = ConditionalRandomField(num_tags=num_tags, allowed_transitions=allowed_transitions(id2label))
# fast_CRF.trans_m = trans_m
# fast_res = fast_CRF.viterbi_decode(logits, mask, get_score=True, unpad=True)
@@ -91,7 +91,7 @@ class TestCRF(unittest.TestCase):
# mask = seq_len_to_byte_mask(seq_lens)
# allen_res = allen_CRF.viterbi_tags(logits, mask)
#
# from fastNLP.modules.decoder.CRF import ConditionalRandomField, allowed_transitions
# from fastNLP.modules.decoder.crf import ConditionalRandomField, allowed_transitions
# fast_CRF = ConditionalRandomField(num_tags=num_tags, allowed_transitions=allowed_transitions(id2label,
# encoding_type='BMES'))
# fast_CRF.trans_m = trans_m
@@ -104,7 +104,7 @@ class TestCRF(unittest.TestCase):
def test_case3(self):
# 测试crf的loss不会出现负数
import torch
from fastNLP.modules.decoder.CRF import ConditionalRandomField
from fastNLP.modules.decoder.crf import ConditionalRandomField
from fastNLP.core.utils import seq_len_to_mask
from torch import optim
from torch import nn


Loading…
Cancel
Save