diff --git a/fastNLP/io/data_loader/__init__.py b/fastNLP/io/data_loader/__init__.py index 5d6b08b0..b3ca9021 100644 --- a/fastNLP/io/data_loader/__init__.py +++ b/fastNLP/io/data_loader/__init__.py @@ -1,4 +1,8 @@ """ +.. warning:: + + 本模块在 `0.5.0版本` 中被废弃,由 :mod:`~fastNLP.io.loader` 和 :mod:`~fastNLP.io.pipe` 模块替代。 + 用于读数据集的模块, 可以读取文本分类、序列标注、Matching任务的数据集 这些模块的具体介绍如下,您可以通过阅读 :doc:`教程` 来进行了解。 diff --git a/fastNLP/io/dataset_loader.py b/fastNLP/io/dataset_loader.py index 3e3ac575..e1e06ec9 100644 --- a/fastNLP/io/dataset_loader.py +++ b/fastNLP/io/dataset_loader.py @@ -1,4 +1,8 @@ """ +.. warning:: + + 本模块将在 `0.5.0版本` 中被废弃,由 :mod:`~fastNLP.io.loader` 和 :mod:`~fastNLP.io.pipe` 模块替代。 + dataset_loader模块实现了许多 DataSetLoader, 用于读取不同格式的数据, 并返回 `DataSet` , 得到的 :class:`~fastNLP.DataSet` 对象可以直接传入 :class:`~fastNLP.Trainer` 和 :class:`~fastNLP.Tester`, 用于模型的训练和测试。 以SNLI数据集为例:: @@ -11,6 +15,7 @@ dataset_loader模块实现了许多 DataSetLoader, 用于读取不同格式的 # ... do stuff 为 fastNLP 提供 DataSetLoader 的开发者请参考 :class:`~fastNLP.io.DataSetLoader` 的介绍。 + """ __all__ = [ 'CSVLoader', diff --git a/fastNLP/io/file_utils.py b/fastNLP/io/file_utils.py index eb6dea1d..8d04c8be 100644 --- a/fastNLP/io/file_utils.py +++ b/fastNLP/io/file_utils.py @@ -1,4 +1,3 @@ - import os from pathlib import Path from urllib.parse import urlparse @@ -9,35 +8,29 @@ from tqdm import tqdm import shutil from requests import HTTPError - PRETRAINED_BERT_MODEL_DIR = { 'en': 'bert-large-cased-wwm.zip', - 'en-base-uncased': 'bert-base-uncased-3413b23c.zip', - 'en-base-cased': 'bert-base-cased-f89bfe08.zip', - 'en-large-uncased': 'bert-large-uncased-20939f45.zip', - 'en-large-cased': 'bert-large-cased-e0cf90fc.zip', - - 'en-large-cased-wwm': 'bert-large-cased-wwm-a457f118.zip', - 'en-large-uncased-wwm': 'bert-large-uncased-wwm-92a50aeb.zip', - 'en-base-cased-mrpc': 'bert-base-cased-finetuned-mrpc-c7099855.zip', - - 'cn': 'bert-base-chinese-29d0a84a.zip', - 'cn-base': 'bert-base-chinese-29d0a84a.zip', - 'bert-base-chinese': 'bert-base-chinese.zip', - 'bert-base-cased': 'bert-base-cased.zip', - 'bert-base-cased-finetuned-mrpc': 'bert-base-cased-finetuned-mrpc.zip', - 'bert-large-cased-wwm': 'bert-large-cased-wwm.zip', - 'bert-large-uncased': 'bert-large-uncased.zip', - 'bert-large-cased': 'bert-large-cased.zip', - 'bert-base-uncased': 'bert-base-uncased.zip', - 'bert-large-uncased-wwm': 'bert-large-uncased-wwm.zip', - 'bert-chinese-wwm': 'bert-chinese-wwm.zip', - 'bert-base-multilingual-cased': 'bert-base-multilingual-cased.zip', - 'bert-base-multilingual-uncased': 'bert-base-multilingual-uncased.zip', + 'en-large-cased-wwm': 'bert-large-cased-wwm.zip', + 'en-large-uncased-wwm': 'bert-large-uncased-wwm.zip', + + 'en-large-uncased': 'bert-large-uncased.zip', + 'en-large-cased': 'bert-large-cased.zip', + + 'en-base-uncased': 'bert-base-uncased.zip', + 'en-base-cased': 'bert-base-cased.zip', + + 'en-base-cased-mrpc': 'bert-base-cased-finetuned-mrpc.zip', + + 'multi-base-cased': 'bert-base-multilingual-cased.zip', + 'multi-base-uncased': 'bert-base-multilingual-uncased.zip', + + 'cn': 'bert-chinese-wwm.zip', + 'cn-base': 'bert-base-chinese.zip', + 'cn-wwm': 'bert-chinese-wwm.zip', } PRETRAINED_ELMO_MODEL_DIR = { - 'en': 'elmo_en-d39843fe.tar.gz', + 'en': 'elmo_en_Medium.tar.gz', 'en-small': "elmo_en_Small.zip", 'en-original-5.5b': 'elmo_en_Original_5.5B.zip', 'en-original': 'elmo_en_Original.zip', @@ -45,30 +38,33 @@ PRETRAINED_ELMO_MODEL_DIR = { } PRETRAIN_STATIC_FILES = { - 'en': 'glove.840B.300d-cc1ad5e1.tar.gz', - 'en-glove-840b-300': 'glove.840B.300d-cc1ad5e1.tar.gz', - 'en-glove-6b-50': "glove.6B.50d-a6028c70.tar.gz", - 'en-word2vec-300': "GoogleNews-vectors-negative300-be166d9d.tar.gz", + 'en': 'glove.840B.300d.zip', + + 'en-glove-6b-50d': 'glove.6B.50d.zip', + 'en-glove-6b-100d': 'glove.6B.100d.zip', + 'en-glove-6b-200d': 'glove.6B.200d.zip', + 'en-glove-6b-300d': 'glove.6B.300d.zip', + 'en-glove-42b-300d': 'glove.42B.300d.zip', + 'en-glove-840b-300d': 'glove.840B.300d.zip', + 'en-glove-twitter-27b-25d': 'glove.twitter.27B.25d.zip', + 'en-glove-twitter-27b-50d': 'glove.twitter.27B.50d.zip', + 'en-glove-twitter-27b-100d': 'glove.twitter.27B.100d.zip', + 'en-glove-twitter-27b-200d': 'glove.twitter.27B.200d.zip', + + 'en-word2vec-300': "GoogleNews-vectors-negative300.txt.gz", + 'en-fasttext-wiki': "wiki-news-300d-1M.vec.zip", - 'cn': "tencent_cn-dab24577.tar.gz", - 'cn-fasttext': "cc.zh.300.vec-d68a9bcf.gz", - 'sgns-literature-word':'sgns.literature.word.txt.zip', - 'glove-42b-300d': 'glove.42B.300d.zip', - 'glove-6b-50d': 'glove.6B.50d.zip', - 'glove-6b-100d': 'glove.6B.100d.zip', - 'glove-6b-200d': 'glove.6B.200d.zip', - 'glove-6b-300d': 'glove.6B.300d.zip', - 'glove-840b-300d': 'glove.840B.300d.zip', - 'glove-twitter-27b-25d': 'glove.twitter.27B.25d.zip', - 'glove-twitter-27b-50d': 'glove.twitter.27B.50d.zip', - 'glove-twitter-27b-100d': 'glove.twitter.27B.100d.zip', - 'glove-twitter-27b-200d': 'glove.twitter.27B.200d.zip' -} + 'en-fasttext-crawl': "crawl-300d-2M.vec.zip", + 'cn': "tencent_cn.txt.zip", + 'cn-tencent': "tencent_cn.txt.zip", + 'cn-fasttext': "cc.zh.300.vec.gz", + 'cn-sgns-literature-word': 'sgns.literature.word.txt.zip', +} DATASET_DIR = { 'aclImdb': "imdb.zip", - "yelp-review-full":"yelp_review_full.tar.gz", + "yelp-review-full": "yelp_review_full.tar.gz", "yelp-review-polarity": "yelp_review_polarity.tar.gz", "mnli": "MNLI.zip", "snli": "SNLI.zip", @@ -90,7 +86,7 @@ FASTNLP_EXTEND_EMBEDDING_URL = {'elmo': 'fastnlp_elmo_url.txt', } -def cached_path(url_or_filename:str, cache_dir:str=None, name=None) -> Path: +def cached_path(url_or_filename: str, cache_dir: str = None, name=None) -> Path: """ 给定一个url,尝试通过url中的解析出来的文件名字filename到{cache_dir}/{name}/{filename}下寻找这个文件, (1)如果cache_dir=None, 则cache_dir=~/.fastNLP/; 否则cache_dir=cache_dir @@ -147,7 +143,7 @@ def get_filepath(filepath): """ if os.path.isdir(filepath): files = os.listdir(filepath) - if len(files)==1: + if len(files) == 1: return os.path.join(filepath, files[0]) else: return filepath @@ -191,9 +187,9 @@ def _get_base_url(name): return url + '/' else: URLS = { - 'embedding': "http://dbcloud.irocn.cn:8989/api/public/dl/", - "dataset": "http://dbcloud.irocn.cn:8989/api/public/dl/dataset/" - } + 'embedding': "http://dbcloud.irocn.cn:8989/api/public/dl/", + "dataset": "http://dbcloud.irocn.cn:8989/api/public/dl/dataset/" + } if name.lower() not in URLS: raise KeyError(f"{name} is not recognized.") return URLS[name.lower()] @@ -213,14 +209,13 @@ def _get_embedding_url(embed_type, name): url = _read_extend_url_file(_filename, name) if url: return url - map = PRETRAIN_MAP.get(embed_type, None) - if map: - - filename = map.get(name, None) + embed_map = PRETRAIN_MAP.get(embed_type, None) + if embed_map: + filename = embed_map.get(name, None) if filename: url = _get_base_url('embedding') + filename return url - raise KeyError("There is no {}. Only supports {}.".format(name, list(map.keys()))) + raise KeyError("There is no {}. Only supports {}.".format(name, list(embed_map.keys()))) else: raise KeyError(f"There is no {embed_type}. Only supports bert, elmo, static") @@ -313,16 +308,16 @@ def get_from_cache(url: str, cache_dir: Path = None) -> Path: # Download to temporary file, then copy to cache dir once finished. # Otherwise you get corrupt cache entries if the download gets interrupted. fd, temp_filename = tempfile.mkstemp() - print("%s not found in cache, downloading to %s"%(url, temp_filename)) + print("%s not found in cache, downloading to %s" % (url, temp_filename)) # GET file object req = requests.get(url, stream=True, headers={"User-Agent": "fastNLP"}) - if req.status_code==200: + if req.status_code == 200: content_length = req.headers.get("Content-Length") total = int(content_length) if content_length is not None else None progress = tqdm(unit="B", total=total, unit_scale=1) with open(temp_filename, "wb") as temp_file: - for chunk in req.iter_content(chunk_size=1024*16): + for chunk in req.iter_content(chunk_size=1024 * 16): if chunk: # filter out keep-alive new chunks progress.update(len(chunk)) temp_file.write(chunk) @@ -340,7 +335,7 @@ def get_from_cache(url: str, cache_dir: Path = None) -> Path: else: untar_gz_file(Path(temp_filename), Path(uncompress_temp_dir)) filenames = os.listdir(uncompress_temp_dir) - if len(filenames)==1: + if len(filenames) == 1: if os.path.isdir(os.path.join(uncompress_temp_dir, filenames[0])): uncompress_temp_dir = os.path.join(uncompress_temp_dir, filenames[0]) @@ -356,9 +351,9 @@ def get_from_cache(url: str, cache_dir: Path = None) -> Path: if os.path.isdir(uncompress_temp_dir): for filename in os.listdir(uncompress_temp_dir): if os.path.isdir(os.path.join(uncompress_temp_dir, filename)): - shutil.copytree(os.path.join(uncompress_temp_dir, filename), cache_path/filename) + shutil.copytree(os.path.join(uncompress_temp_dir, filename), cache_path / filename) else: - shutil.copyfile(os.path.join(uncompress_temp_dir, filename), cache_path/filename) + shutil.copyfile(os.path.join(uncompress_temp_dir, filename), cache_path / filename) else: shutil.copyfile(uncompress_temp_dir, cache_path) success = True @@ -390,7 +385,7 @@ def unzip_file(file: Path, to: Path): zipObj.extractall(to) -def untar_gz_file(file:Path, to:Path): +def untar_gz_file(file: Path, to: Path): import tarfile with tarfile.open(file, 'r:gz') as tar: @@ -409,12 +404,11 @@ def match_file(dir_name: str, cache_dir: Path) -> str: files = os.listdir(cache_dir) matched_filenames = [] for file_name in files: - if re.match(dir_name+'$', file_name) or re.match(dir_name+'\\..*', file_name): + if re.match(dir_name + '$', file_name) or re.match(dir_name + '\\..*', file_name): matched_filenames.append(file_name) - if len(matched_filenames)==0: + if len(matched_filenames) == 0: return '' - elif len(matched_filenames)==1: + elif len(matched_filenames) == 1: return matched_filenames[-1] else: raise RuntimeError(f"Duplicate matched files:{matched_filenames}, this should be caused by a bug.") - diff --git a/fastNLP/io/loader/__init__.py b/fastNLP/io/loader/__init__.py index 8c0d391c..5abef0eb 100644 --- a/fastNLP/io/loader/__init__.py +++ b/fastNLP/io/loader/__init__.py @@ -1,25 +1,35 @@ """ Loader用于读取数据,并将内容读取到 :class:`~fastNLP.DataSet` 或者 :class:`~fastNLP.io.DataBundle` 中。所有的Loader都支持以下的 -三个方法: __init__(),_load(), loads(). 其中__init__()用于申明读取参数,以及说明该Loader支持的数据格式,读取后Dataset中field -; _load(path)方法传入一个文件路径读取单个文件,并返回DataSet; load(paths)用于读取文件夹下的文件,并返回DataBundle, load()方法 -支持以下三种类型的参数:: - - (0) 如果传入None,将尝试自动下载数据集并缓存。但不是所有的数据都可以直接下载。 - (1) 如果传入的是一个文件path,则返回的DataBundle包含一个名为train的DataSet可以通过data_bundle.datasets['train']获取 - (2) 传入的是一个文件夹目录,将读取的是这个文件夹下文件名中包含'train', 'test', 'dev'的文件,其它文件会被忽略。 - 假设某个目录下的文件为 - -train.txt - -dev.txt - -test.txt - -other.txt - Loader().load('/path/to/dir')读取,返回的data_bundle中可以用data_bundle.datasets['train'], data_bundle.datasets['dev'], - data_bundle.datasets['test']获取对应的DataSet,其中other.txt的内容会被忽略。 - 假设某个目录下的文件为 - -train.txt - -dev.txt - Loader().load('/path/to/dir')读取,返回的data_bundle中可以用data_bundle.datasets['train'], data_bundle.datasets['dev']获取 - 对应的DataSet。 - (3) 传入一个dict,key为dataset的名称,value是该dataset的文件路径。 +三个方法: ``__init__`` , ``_load`` , ``loads`` . 其中 ``__init__(...)`` 用于申明读取参数,以及说明该Loader支持的数据格式, +读取后 :class:`~fastNLP.Dataset` 中的 `field` ; ``_load(path)`` 方法传入文件路径读取单个文件,并返回 :class:`~fastNLP.Dataset` ; +``load(paths)`` 用于读取文件夹下的文件,并返回 :class:`~fastNLP.io.DataBundle` 类型的对象 , load()方法支持以下几种类型的参数: + +0.传入None + 将尝试自动下载数据集并缓存。但不是所有的数据都可以直接下载。 + +1.传入一个文件path + 返回的 data_bundle 包含一个名为 `train` 的 dataset ,可以通过 data_bundle.datasets['train']获取 + +2.传入一个文件夹目录 + 将读取的是这个文件夹下文件名中包含'train', 'test', 'dev'的文件,其它文件会被忽略。假设某个目录下的文件为:: + + -train.txt + -dev.txt + -test.txt + -other.txt + + Loader().load('/path/to/dir')读取,返回的 data_bundle 中可以用 data_bundle.datasets['train'], data_bundle.datasets['dev'], + data_bundle.datasets['test'] 获取对应的DataSet,其中other.txt的内容会被忽略。假设某个目录下的文件为:: + + -train.txt + -dev.txt + + Loader().load('/path/to/dir')读取,返回的 data_bundle 中可以用 data_bundle.datasets['train'], + data_bundle.datasets['dev'] 获取对应的DataSet。 + +3.传入一个dict + key为 dataset 的名称,value 是该 dataset 的文件路径:: + paths = {'train':'/path/to/train', 'dev': '/path/to/dev', 'test':'/path/to/test'} Loader().load(paths) # 返回的data_bundle可以通过以下的方式获取相应的DataSet, data_bundle.datasets['train'], data_bundle.datasets['dev'], data_bundle.datasets['test'] diff --git a/fastNLP/io/pipe/__init__.py b/fastNLP/io/pipe/__init__.py index 4cec3ad5..6a5e6948 100644 --- a/fastNLP/io/pipe/__init__.py +++ b/fastNLP/io/pipe/__init__.py @@ -1,7 +1,8 @@ """ -Pipe用于处理数据,所有的Pipe都包含一个process(DataBundle)方法,传入一个DataBundle对象, 在传入DataBundle上进行原位修改,并将其返回; -process_from_file(paths)传入的文件路径,返回一个DataBundle。process(DataBundle)或者process_from_file(paths)的返回DataBundle -中的DataSet一般都包含原文与转换为index的输入,以及转换为index的target;除了DataSet之外,还会包含将field转为index时所建立的词表。 +Pipe用于处理数据,所有的Pipe都包含一个 process(data_bundle) 方法,传入一个 :class:`~fastNLP.io.DataBundle` 类型的对象, +在传入 data_bundle 上进行原位修改,并将其返回; process_from_file(paths) 传入的文件路径,返回一个 :class:`~fastNLP.io.DataBundle` 。 +process(data_bundle) 或者 process_from_file(paths)的返回 :class:`~fastNLP.io.DataBundle` 中的 :class:`~fastNLP.DataSet` + 一般都包含原文与转换为index的输入以及转换为index的target;除了 :class:`~fastNLP.DataSet` 之外,还会包含将field转为index时所建立的词表。 """ __all__ = [ diff --git a/fastNLP/io/pipe/matching.py b/fastNLP/io/pipe/matching.py index 76116345..9f7c7d68 100644 --- a/fastNLP/io/pipe/matching.py +++ b/fastNLP/io/pipe/matching.py @@ -1,4 +1,3 @@ -import math from .pipe import Pipe from .utils import get_tokenizer @@ -19,19 +18,17 @@ class MatchingBertPipe(Pipe): "...", "...", "[...]", ., . words列是将raw_words1(即premise), raw_words2(即hypothesis)使用"[SEP]"链接起来转换为index的。 - words列被设置为input,target列被设置为target. + words列被设置为input,target列被设置为target和input(设置为input以方便在forward函数中计算loss, + 如果不在forward函数中计算loss也不影响,fastNLP将根据forward函数的形参名进行传参). :param bool lower: 是否将word小写化。 :param str tokenizer: 使用什么tokenizer来将句子切分为words. 支持spacy, raw两种。raw即使用空格拆分。 - :param int max_concat_sent_length: 如果concat后的句子长度超过了该值,则合并后的句子将被截断到这个长度,截断时同时对premise - 和hypothesis按比例截断。 """ - def __init__(self, lower=False, tokenizer:str='raw', max_concat_sent_length:int=480): + def __init__(self, lower=False, tokenizer: str='raw'): super().__init__() self.lower = bool(lower) self.tokenizer = get_tokenizer(tokenizer=tokenizer) - self.max_concat_sent_length = int(max_concat_sent_length) def _tokenize(self, data_bundle, field_names, new_field_names): """ @@ -43,11 +40,15 @@ class MatchingBertPipe(Pipe): """ for name, dataset in data_bundle.datasets.items(): for field_name, new_field_name in zip(field_names, new_field_names): - dataset.apply_field(lambda words:self.tokenizer(words), field_name=field_name, + dataset.apply_field(lambda words: self.tokenizer(words), field_name=field_name, new_field_name=new_field_name) return data_bundle def process(self, data_bundle): + for dataset in data_bundle.datasets.values(): + if dataset.has_field(Const.TARGET): + dataset.drop(lambda x: x[Const.TARGET] == '-') + for name, dataset in data_bundle.datasets.items(): dataset.copy_field(Const.RAW_WORDS(0), Const.INPUTS(0)) dataset.copy_field(Const.RAW_WORDS(1), Const.INPUTS(1)) @@ -64,40 +65,31 @@ class MatchingBertPipe(Pipe): def concat(ins): words0 = ins[Const.INPUTS(0)] words1 = ins[Const.INPUTS(1)] - len0 = len(words0) - len1 = len(words1) - if len0 + len1 > self.max_concat_sent_length: - ratio = self.max_concat_sent_length / (len0 + len1) - len0 = math.floor(ratio * len0) - len1 = math.floor(ratio * len1) - words0 = words0[:len0] - words1 = words1[:len1] - words = words0 + ['[SEP]'] + words1 return words + for name, dataset in data_bundle.datasets.items(): dataset.apply(concat, new_field_name=Const.INPUT) dataset.delete_field(Const.INPUTS(0)) dataset.delete_field(Const.INPUTS(1)) word_vocab = Vocabulary() - word_vocab.from_dataset(data_bundle.datasets['train'], field_name=Const.INPUT, + word_vocab.from_dataset(*[dataset for name, dataset in data_bundle.datasets.items() if 'train' in name], + field_name=Const.INPUT, no_create_entry_dataset=[dataset for name, dataset in data_bundle.datasets.items() if - name != 'train']) + 'train' not in name]) word_vocab.index_dataset(*data_bundle.datasets.values(), field_name=Const.INPUT) target_vocab = Vocabulary(padding=None, unknown=None) target_vocab.from_dataset(data_bundle.datasets['train'], field_name=Const.TARGET) - has_target_datasets = [] - for name, dataset in data_bundle.datasets.items(): - if dataset.has_field(Const.TARGET): - has_target_datasets.append(dataset) + has_target_datasets = [dataset for name, dataset in data_bundle.datasets.items() if + dataset.has_field(Const.TARGET)] target_vocab.index_dataset(*has_target_datasets, field_name=Const.TARGET) data_bundle.set_vocab(word_vocab, Const.INPUT) data_bundle.set_vocab(target_vocab, Const.TARGET) - input_fields = [Const.INPUT, Const.INPUT_LEN] + input_fields = [Const.INPUT, Const.INPUT_LEN, Const.TARGET] target_fields = [Const.TARGET] for name, dataset in data_bundle.datasets.items(): @@ -149,12 +141,14 @@ class MatchingPipe(Pipe): "This site includes a...", "The Government Executive...", "[11, 12, 13,...]", "[2, 7, ...]", 0, 6, 7 "...", "...", "[...]", "[...]", ., ., . - words1是premise,words2是hypothesis。其中words1,words2,seq_len1,seq_len2被设置为input;target被设置为target。 + words1是premise,words2是hypothesis。其中words1,words2,seq_len1,seq_len2被设置为input;target被设置为target + 和input(设置为input以方便在forward函数中计算loss,如果不在forward函数中计算loss也不影响,fastNLP将根据forward函数 + 的形参名进行传参)。 :param bool lower: 是否将所有raw_words转为小写。 :param str tokenizer: 将原始数据tokenize的方式。支持spacy, raw. spacy是使用spacy切分,raw就是用空格切分。 """ - def __init__(self, lower=False, tokenizer:str='raw'): + def __init__(self, lower=False, tokenizer: str='raw'): super().__init__() self.lower = bool(lower) @@ -170,7 +164,7 @@ class MatchingPipe(Pipe): """ for name, dataset in data_bundle.datasets.items(): for field_name, new_field_name in zip(field_names, new_field_names): - dataset.apply_field(lambda words:self.tokenizer(words), field_name=field_name, + dataset.apply_field(lambda words: self.tokenizer(words), field_name=field_name, new_field_name=new_field_name) return data_bundle @@ -191,34 +185,37 @@ class MatchingPipe(Pipe): data_bundle = self._tokenize(data_bundle, [Const.RAW_WORDS(0), Const.RAW_WORDS(1)], [Const.INPUTS(0), Const.INPUTS(1)]) + for dataset in data_bundle.datasets.values(): + if dataset.has_field(Const.TARGET): + dataset.drop(lambda x: x[Const.TARGET] == '-') + if self.lower: for name, dataset in data_bundle.datasets.items(): dataset[Const.INPUTS(0)].lower() dataset[Const.INPUTS(1)].lower() word_vocab = Vocabulary() - word_vocab.from_dataset(data_bundle.datasets['train'], field_name=[Const.INPUTS(0), Const.INPUTS(1)], + word_vocab.from_dataset(*[dataset for name, dataset in data_bundle.datasets.items() if 'train' in name], + field_name=[Const.INPUTS(0), Const.INPUTS(1)], no_create_entry_dataset=[dataset for name, dataset in data_bundle.datasets.items() if - name != 'train']) + 'train' not in name]) word_vocab.index_dataset(*data_bundle.datasets.values(), field_name=[Const.INPUTS(0), Const.INPUTS(1)]) target_vocab = Vocabulary(padding=None, unknown=None) target_vocab.from_dataset(data_bundle.datasets['train'], field_name=Const.TARGET) - has_target_datasets = [] - for name, dataset in data_bundle.datasets.items(): - if dataset.has_field(Const.TARGET): - has_target_datasets.append(dataset) + has_target_datasets = [dataset for name, dataset in data_bundle.datasets.items() if + dataset.has_field(Const.TARGET)] target_vocab.index_dataset(*has_target_datasets, field_name=Const.TARGET) data_bundle.set_vocab(word_vocab, Const.INPUTS(0)) data_bundle.set_vocab(target_vocab, Const.TARGET) - input_fields = [Const.INPUTS(0), Const.INPUTS(1), Const.INPUT_LEN(0), Const.INPUT_LEN(1)] + input_fields = [Const.INPUTS(0), Const.INPUTS(1), Const.INPUT_LENS(0), Const.INPUT_LENS(1), Const.TARGET] target_fields = [Const.TARGET] for name, dataset in data_bundle.datasets.items(): - dataset.add_seq_len(Const.INPUTS(0), Const.INPUT_LEN(0)) - dataset.add_seq_len(Const.INPUTS(1), Const.INPUT_LEN(1)) + dataset.add_seq_len(Const.INPUTS(0), Const.INPUT_LENS(0)) + dataset.add_seq_len(Const.INPUTS(1), Const.INPUT_LENS(1)) dataset.set_input(*input_fields, flag=True) dataset.set_target(*target_fields, flag=True) diff --git a/fastNLP/models/bert.py b/fastNLP/models/bert.py index adecab60..ad7750ec 100644 --- a/fastNLP/models/bert.py +++ b/fastNLP/models/bert.py @@ -2,13 +2,14 @@ bert.py is modified from huggingface/pytorch-pretrained-BERT, which is licensed under the Apache License 2.0. """ +import os import torch from torch import nn from .base_model import BaseModel from ..core.const import Const from ..modules.encoder import BertModel -from ..modules.encoder.bert import BertConfig +from ..modules.encoder.bert import BertConfig, CONFIG_FILE class BertForSequenceClassification(BaseModel): @@ -54,6 +55,7 @@ class BertForSequenceClassification(BaseModel): self.num_labels = num_labels if bert_dir is not None: self.bert = BertModel.from_pretrained(bert_dir) + config = BertConfig(os.path.join(bert_dir, CONFIG_FILE)) else: if config is None: config = BertConfig(30522) @@ -67,20 +69,20 @@ class BertForSequenceClassification(BaseModel): model = cls(num_labels=num_labels, config=config, bert_dir=pretrained_model_dir) return model - def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None): - _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) + def forward(self, words, seq_len=None, target=None): + _, pooled_output = self.bert(words, attention_mask=seq_len, output_all_encoded_layers=False) pooled_output = self.dropout(pooled_output) logits = self.classifier(pooled_output) - if labels is not None: + if target is not None: loss_fct = nn.CrossEntropyLoss() - loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + loss = loss_fct(logits, target) return {Const.OUTPUT: logits, Const.LOSS: loss} else: return {Const.OUTPUT: logits} - def predict(self, input_ids, token_type_ids=None, attention_mask=None): - logits = self.forward(input_ids, token_type_ids, attention_mask) + def predict(self, words, seq_len=None): + logits = self.forward(words, seq_len=seq_len)[Const.OUTPUT] return {Const.OUTPUT: torch.argmax(logits, dim=-1)} @@ -140,7 +142,8 @@ class BertForMultipleChoice(BaseModel): model = cls(num_choices=num_choices, config=config, bert_dir=pretrained_model_dir) return model - def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None): + def forward(self, words, seq_len1=None, seq_len2=None, target=None): + input_ids, token_type_ids, attention_mask = words, seq_len1, seq_len2 flat_input_ids = input_ids.view(-1, input_ids.size(-1)) flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) @@ -149,15 +152,15 @@ class BertForMultipleChoice(BaseModel): logits = self.classifier(pooled_output) reshaped_logits = logits.view(-1, self.num_choices) - if labels is not None: + if target is not None: loss_fct = nn.CrossEntropyLoss() - loss = loss_fct(reshaped_logits, labels) + loss = loss_fct(reshaped_logits, target) return {Const.OUTPUT: reshaped_logits, Const.LOSS: loss} else: return {Const.OUTPUT: reshaped_logits} - def predict(self, input_ids, token_type_ids=None, attention_mask=None): - logits = self.forward(input_ids, token_type_ids, attention_mask)[Const.OUTPUT] + def predict(self, words, seq_len1=None, seq_len2=None,): + logits = self.forward(words, seq_len1=seq_len1, seq_len2=seq_len2)[Const.OUTPUT] return {Const.OUTPUT: torch.argmax(logits, dim=-1)} @@ -219,27 +222,27 @@ class BertForTokenClassification(BaseModel): model = cls(num_labels=num_labels, config=config, bert_dir=pretrained_model_dir) return model - def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None): - sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) + def forward(self, words, seq_len1=None, seq_len2=None, target=None): + sequence_output, _ = self.bert(words, seq_len1, seq_len2, output_all_encoded_layers=False) sequence_output = self.dropout(sequence_output) logits = self.classifier(sequence_output) - if labels is not None: + if target is not None: loss_fct = nn.CrossEntropyLoss() # Only keep active parts of the loss - if attention_mask is not None: - active_loss = attention_mask.view(-1) == 1 + if seq_len2 is not None: + active_loss = seq_len2.view(-1) == 1 active_logits = logits.view(-1, self.num_labels)[active_loss] - active_labels = labels.view(-1)[active_loss] + active_labels = target.view(-1)[active_loss] loss = loss_fct(active_logits, active_labels) else: - loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + loss = loss_fct(logits.view(-1, self.num_labels), target.view(-1)) return {Const.OUTPUT: logits, Const.LOSS: loss} else: return {Const.OUTPUT: logits} - def predict(self, input_ids, token_type_ids=None, attention_mask=None): - logits = self.forward(input_ids, token_type_ids, attention_mask)[Const.OUTPUT] + def predict(self, words, seq_len1=None, seq_len2=None): + logits = self.forward(words, seq_len1, seq_len2)[Const.OUTPUT] return {Const.OUTPUT: torch.argmax(logits, dim=-1)} @@ -304,34 +307,34 @@ class BertForQuestionAnswering(BaseModel): model = cls(config=config, bert_dir=pretrained_model_dir) return model - def forward(self, input_ids, token_type_ids=None, attention_mask=None, start_positions=None, end_positions=None): - sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) + def forward(self, words, seq_len1=None, seq_len2=None, target1=None, target2=None): + sequence_output, _ = self.bert(words, seq_len1, seq_len2, output_all_encoded_layers=False) logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) - if start_positions is not None and end_positions is not None: + if target1 is not None and target2 is not None: # If we are on multi-GPU, split add a dimension - if len(start_positions.size()) > 1: - start_positions = start_positions.squeeze(-1) - if len(end_positions.size()) > 1: - end_positions = end_positions.squeeze(-1) + if len(target1.size()) > 1: + target1 = target1.squeeze(-1) + if len(target2.size()) > 1: + target2 = target2.squeeze(-1) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) - start_positions.clamp_(0, ignored_index) - end_positions.clamp_(0, ignored_index) + target1.clamp_(0, ignored_index) + target2.clamp_(0, ignored_index) loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index) - start_loss = loss_fct(start_logits, start_positions) - end_loss = loss_fct(end_logits, end_positions) + start_loss = loss_fct(start_logits, target1) + end_loss = loss_fct(end_logits, target2) total_loss = (start_loss + end_loss) / 2 return {Const.OUTPUTS(0): start_logits, Const.OUTPUTS(1): end_logits, Const.LOSS: total_loss} else: return {Const.OUTPUTS(0): start_logits, Const.OUTPUTS(1): end_logits} - def predict(self, input_ids, token_type_ids=None, attention_mask=None, **kwargs): - logits = self.forward(input_ids, token_type_ids, attention_mask) + def predict(self, words, seq_len1=None, seq_len2=None): + logits = self.forward(words, seq_len1, seq_len2) start_logits = logits[Const.OUTPUTS(0)] end_logits = logits[Const.OUTPUTS(1)] return {Const.OUTPUTS(0): torch.argmax(start_logits, dim=-1),