add biaffine dependency parser & some modulestags/v0.2.0
@@ -93,5 +93,35 @@ class LabelField(Field): | |||
return torch.LongTensor([self._index]) | |||
class SeqLabelField(Field): | |||
def __init__(self, label_seq, is_target=True): | |||
super(SeqLabelField, self).__init__(is_target) | |||
self.label_seq = label_seq | |||
self._index = None | |||
def get_length(self): | |||
return len(self.label_seq) | |||
def index(self, vocab): | |||
if self._index is None: | |||
self._index = [vocab[c] for c in self.label_seq] | |||
return self._index | |||
def to_tensor(self, padding_length): | |||
pads = [0] * (padding_length - self.get_length()) | |||
if self._index is None: | |||
if self.get_length() == 0: | |||
return torch.LongTensor(pads) | |||
elif isinstance(self.label_seq[0], int): | |||
return torch.LongTensor(self.label_seq + pads) | |||
elif isinstance(self.label_seq[0], str): | |||
raise RuntimeError("Field {} not indexed. Call index method.".format(self.label)) | |||
else: | |||
raise RuntimeError( | |||
"Not support type for SeqLabelField. Expect str or int, got {}.".format(type(self.label))) | |||
else: | |||
return torch.LongTensor(self._index + pads) | |||
if __name__ == "__main__": | |||
tf = TextField("test the code".split(), is_target=False) |
@@ -18,6 +18,15 @@ def isiterable(p_object): | |||
return False | |||
return True | |||
def check_build_vocab(func): | |||
def _wrapper(self, *args, **kwargs): | |||
if self.word2idx is None: | |||
self.build_vocab() | |||
self.build_reverse_vocab() | |||
elif self.idx2word is None: | |||
self.build_reverse_vocab() | |||
return func(self, *args, **kwargs) | |||
return _wrapper | |||
class Vocabulary(object): | |||
"""Use for word and index one to one mapping | |||
@@ -30,30 +39,23 @@ class Vocabulary(object): | |||
vocab["word"] | |||
vocab.to_word(5) | |||
""" | |||
def __init__(self, need_default=True): | |||
def __init__(self, need_default=True, max_size=None, min_freq=None): | |||
""" | |||
:param bool need_default: set if the Vocabulary has default labels reserved for sequences. Default: True. | |||
:param int max_size: set the max number of words in Vocabulary. Default: None | |||
:param int min_freq: set the min occur frequency of words in Vocabulary. Default: None | |||
""" | |||
if need_default: | |||
self.word2idx = deepcopy(DEFAULT_WORD_TO_INDEX) | |||
self.padding_label = DEFAULT_PADDING_LABEL | |||
self.unknown_label = DEFAULT_UNKNOWN_LABEL | |||
else: | |||
self.word2idx = {} | |||
self.padding_label = None | |||
self.unknown_label = None | |||
self.max_size = max_size | |||
self.min_freq = min_freq | |||
self.word_count = {} | |||
self.has_default = need_default | |||
self.word2idx = None | |||
self.idx2word = None | |||
def __len__(self): | |||
return len(self.word2idx) | |||
def update(self, word): | |||
"""add word or list of words into Vocabulary | |||
:param word: a list of string or a single string | |||
""" | |||
if not isinstance(word, str) and isiterable(word): | |||
@@ -61,12 +63,48 @@ class Vocabulary(object): | |||
for w in word: | |||
self.update(w) | |||
else: | |||
# it's a word to be added | |||
if word not in self.word2idx: | |||
self.word2idx[word] = len(self) | |||
if self.idx2word is not None: | |||
self.idx2word = None | |||
# it's a word to be added | |||
if word not in self.word_count: | |||
self.word_count[word] = 1 | |||
else: | |||
self.word_count[word] += 1 | |||
self.word2idx = None | |||
def build_vocab(self): | |||
"""build 'word to index' dict, and filter the word using `max_size` and `min_freq` | |||
""" | |||
if self.has_default: | |||
self.word2idx = deepcopy(DEFAULT_WORD_TO_INDEX) | |||
self.padding_label = DEFAULT_PADDING_LABEL | |||
self.unknown_label = DEFAULT_UNKNOWN_LABEL | |||
else: | |||
self.word2idx = {} | |||
self.padding_label = None | |||
self.unknown_label = None | |||
words = sorted(self.word_count.items(), key=lambda kv: kv[1], reverse=True) | |||
if self.min_freq is not None: | |||
words = list(filter(lambda kv: kv[1] >= self.min_freq, words)) | |||
if self.max_size is not None and len(words) > self.max_size: | |||
words = words[:self.max_size] | |||
for w, _ in words: | |||
self.word2idx[w] = len(self.word2idx) | |||
def build_reverse_vocab(self): | |||
"""build 'index to word' dict based on 'word to index' dict | |||
""" | |||
self.idx2word = {self.word2idx[w] : w for w in self.word2idx} | |||
@check_build_vocab | |||
def __len__(self): | |||
return len(self.word2idx) | |||
@check_build_vocab | |||
def has_word(self, w): | |||
return w in self.word2idx | |||
@check_build_vocab | |||
def __getitem__(self, w): | |||
"""To support usage like:: | |||
@@ -74,32 +112,35 @@ class Vocabulary(object): | |||
""" | |||
if w in self.word2idx: | |||
return self.word2idx[w] | |||
else: | |||
elif self.has_default: | |||
return self.word2idx[DEFAULT_UNKNOWN_LABEL] | |||
else: | |||
raise ValueError("word {} not in vocabulary".format(w)) | |||
@check_build_vocab | |||
def to_index(self, w): | |||
""" like to_index(w) function, turn a word to the index | |||
if w is not in Vocabulary, return the unknown label | |||
:param str w: | |||
""" | |||
return self[w] | |||
@property | |||
@check_build_vocab | |||
def unknown_idx(self): | |||
if self.unknown_label is None: | |||
return None | |||
return self.word2idx[self.unknown_label] | |||
@property | |||
@check_build_vocab | |||
def padding_idx(self): | |||
if self.padding_label is None: | |||
return None | |||
return self.word2idx[self.padding_label] | |||
def build_reverse_vocab(self): | |||
"""build 'index to word' dict based on 'word to index' dict | |||
""" | |||
self.idx2word = {self.word2idx[w]: w for w in self.word2idx} | |||
@check_build_vocab | |||
def to_word(self, idx): | |||
"""given a word's index, return the word itself | |||
@@ -8,9 +8,10 @@ from fastNLP.loader.base_loader import BaseLoader | |||
class ConfigLoader(BaseLoader): | |||
"""loader for configuration files""" | |||
def __int__(self, data_path): | |||
def __init__(self, data_path=None): | |||
super(ConfigLoader, self).__init__() | |||
self.config = self.parse(super(ConfigLoader, self).load(data_path)) | |||
if data_path is not None: | |||
self.config = self.parse(super(ConfigLoader, self).load(data_path)) | |||
@staticmethod | |||
def parse(string): | |||
@@ -1,10 +1,10 @@ | |||
import _pickle | |||
import os | |||
import numpy as np | |||
import torch | |||
from fastNLP.loader.base_loader import BaseLoader | |||
from fastNLP.core.vocabulary import Vocabulary | |||
class EmbedLoader(BaseLoader): | |||
"""docstring for EmbedLoader""" | |||
@@ -13,38 +13,72 @@ class EmbedLoader(BaseLoader): | |||
super(EmbedLoader, self).__init__(data_path) | |||
@staticmethod | |||
def load_embedding(emb_dim, emb_file, word_dict, emb_pkl): | |||
def _load_glove(emb_file): | |||
"""Read file as a glove embedding | |||
file format: | |||
embeddings are split by line, | |||
for one embedding, word and numbers split by space | |||
Example:: | |||
word_1 float_1 float_2 ... float_emb_dim | |||
word_2 float_1 float_2 ... float_emb_dim | |||
... | |||
""" | |||
emb = {} | |||
with open(emb_file, 'r', encoding='utf-8') as f: | |||
for line in f: | |||
line = list(filter(lambda w: len(w)>0, line.strip().split(' '))) | |||
if len(line) > 0: | |||
emb[line[0]] = torch.Tensor(list(map(float, line[1:]))) | |||
return emb | |||
@staticmethod | |||
def _load_pretrain(emb_file, emb_type): | |||
"""Read txt data from embedding file and convert to np.array as pre-trained embedding | |||
:param emb_file: str, the pre-trained embedding file path | |||
:param emb_type: str, the pre-trained embedding data format | |||
:return dict: {str: np.array} | |||
""" | |||
if emb_type == 'glove': | |||
return EmbedLoader._load_glove(emb_file) | |||
else: | |||
raise Exception("embedding type {} not support yet".format(emb_type)) | |||
@staticmethod | |||
def load_embedding(emb_dim, emb_file, emb_type, vocab, emb_pkl): | |||
"""Load the pre-trained embedding and combine with the given dictionary. | |||
:param emb_file: str, the pre-trained embedding. | |||
The embedding file should have the following format: | |||
Each line is a word embedding, where a word string is followed by multiple floats. | |||
Floats are separated by space. The word and the first float are separated by space. | |||
:param word_dict: dict, a mapping from word to index. | |||
:param emb_dim: int, the dimension of the embedding. Should be the same as pre-trained embedding. | |||
:param emb_file: str, the pre-trained embedding file path. | |||
:param emb_type: str, the pre-trained embedding format, support glove now | |||
:param vocab: Vocabulary, a mapping from word to index, can be provided by user or built from pre-trained embedding | |||
:param emb_pkl: str, the embedding pickle file. | |||
:return embedding_np: numpy array of shape (len(word_dict), emb_dim) | |||
vocab: input vocab or vocab built by pre-train | |||
TODO: fragile code | |||
""" | |||
# If the embedding pickle exists, load it and return. | |||
if os.path.exists(emb_pkl): | |||
with open(emb_pkl, "rb") as f: | |||
embedding_np = _pickle.load(f) | |||
return embedding_np | |||
embedding_np, vocab = _pickle.load(f) | |||
return embedding_np, vocab | |||
# Otherwise, load the pre-trained embedding. | |||
with open(emb_file, "r", encoding="utf-8") as f: | |||
# begin with a random embedding | |||
embedding_np = np.random.uniform(-1, 1, size=(len(word_dict), emb_dim)) | |||
for line in f: | |||
line = line.strip().split() | |||
if len(line) != emb_dim + 1: | |||
# skip this line if two embedding dimension not match | |||
continue | |||
if line[0] in word_dict: | |||
# find the word and replace its embedding with a pre-trained one | |||
embedding_np[word_dict[line[0]]] = [float(i) for i in line[1:]] | |||
pretrain = EmbedLoader._load_pretrain(emb_file, emb_type) | |||
if vocab is None: | |||
# build vocabulary from pre-trained embedding | |||
vocab = Vocabulary() | |||
for w in pretrain.keys(): | |||
vocab.update(w) | |||
embedding_np = torch.randn(len(vocab), emb_dim) | |||
for w, v in pretrain.items(): | |||
if len(v.shape) > 1 or emb_dim != v.shape[0]: | |||
raise ValueError('pretrian embedding dim is {}, dismatching required {}'.format(v.shape, (emb_dim,))) | |||
if vocab.has_word(w): | |||
embedding_np[vocab[w]] = v | |||
# save and return the result | |||
with open(emb_pkl, "wb") as f: | |||
_pickle.dump(embedding_np, f) | |||
return embedding_np | |||
_pickle.dump((embedding_np, vocab), f) | |||
return embedding_np, vocab |
@@ -0,0 +1,364 @@ | |||
import sys, os | |||
sys.path.append(os.path.join(os.path.dirname(__file__), '../..')) | |||
import copy | |||
import numpy as np | |||
import torch | |||
from collections import defaultdict | |||
from torch import nn | |||
from torch.nn import functional as F | |||
from fastNLP.modules.utils import initial_parameter | |||
from fastNLP.modules.encoder.variational_rnn import VarLSTM | |||
from fastNLP.modules.dropout import TimestepDropout | |||
def mst(scores): | |||
""" | |||
with some modification to support parser output for MST decoding | |||
https://github.com/tdozat/Parser/blob/0739216129cd39d69997d28cbc4133b360ea3934/lib/models/nn.py#L692 | |||
""" | |||
length = scores.shape[0] | |||
min_score = -np.inf | |||
mask = np.zeros((length, length)) | |||
np.fill_diagonal(mask, -np.inf) | |||
scores = scores + mask | |||
heads = np.argmax(scores, axis=1) | |||
heads[0] = 0 | |||
tokens = np.arange(1, length) | |||
roots = np.where(heads[tokens] == 0)[0] + 1 | |||
if len(roots) < 1: | |||
root_scores = scores[tokens, 0] | |||
head_scores = scores[tokens, heads[tokens]] | |||
new_root = tokens[np.argmax(root_scores / head_scores)] | |||
heads[new_root] = 0 | |||
elif len(roots) > 1: | |||
root_scores = scores[roots, 0] | |||
scores[roots, 0] = 0 | |||
new_heads = np.argmax(scores[roots][:, tokens], axis=1) + 1 | |||
new_root = roots[np.argmin( | |||
scores[roots, new_heads] / root_scores)] | |||
heads[roots] = new_heads | |||
heads[new_root] = 0 | |||
edges = defaultdict(set) | |||
vertices = set((0,)) | |||
for dep, head in enumerate(heads[tokens]): | |||
vertices.add(dep + 1) | |||
edges[head].add(dep + 1) | |||
for cycle in _find_cycle(vertices, edges): | |||
dependents = set() | |||
to_visit = set(cycle) | |||
while len(to_visit) > 0: | |||
node = to_visit.pop() | |||
if node not in dependents: | |||
dependents.add(node) | |||
to_visit.update(edges[node]) | |||
cycle = np.array(list(cycle)) | |||
old_heads = heads[cycle] | |||
old_scores = scores[cycle, old_heads] | |||
non_heads = np.array(list(dependents)) | |||
scores[np.repeat(cycle, len(non_heads)), | |||
np.repeat([non_heads], len(cycle), axis=0).flatten()] = min_score | |||
new_heads = np.argmax(scores[cycle][:, tokens], axis=1) + 1 | |||
new_scores = scores[cycle, new_heads] / old_scores | |||
change = np.argmax(new_scores) | |||
changed_cycle = cycle[change] | |||
old_head = old_heads[change] | |||
new_head = new_heads[change] | |||
heads[changed_cycle] = new_head | |||
edges[new_head].add(changed_cycle) | |||
edges[old_head].remove(changed_cycle) | |||
return heads | |||
def _find_cycle(vertices, edges): | |||
""" | |||
https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm | |||
https://github.com/tdozat/Parser/blob/0739216129cd39d69997d28cbc4133b360ea3934/lib/etc/tarjan.py | |||
""" | |||
_index = 0 | |||
_stack = [] | |||
_indices = {} | |||
_lowlinks = {} | |||
_onstack = defaultdict(lambda: False) | |||
_SCCs = [] | |||
def _strongconnect(v): | |||
nonlocal _index | |||
_indices[v] = _index | |||
_lowlinks[v] = _index | |||
_index += 1 | |||
_stack.append(v) | |||
_onstack[v] = True | |||
for w in edges[v]: | |||
if w not in _indices: | |||
_strongconnect(w) | |||
_lowlinks[v] = min(_lowlinks[v], _lowlinks[w]) | |||
elif _onstack[w]: | |||
_lowlinks[v] = min(_lowlinks[v], _indices[w]) | |||
if _lowlinks[v] == _indices[v]: | |||
SCC = set() | |||
while True: | |||
w = _stack.pop() | |||
_onstack[w] = False | |||
SCC.add(w) | |||
if not(w != v): | |||
break | |||
_SCCs.append(SCC) | |||
for v in vertices: | |||
if v not in _indices: | |||
_strongconnect(v) | |||
return [SCC for SCC in _SCCs if len(SCC) > 1] | |||
class GraphParser(nn.Module): | |||
"""Graph based Parser helper class, support greedy decoding and MST(Maximum Spanning Tree) decoding | |||
""" | |||
def __init__(self): | |||
super(GraphParser, self).__init__() | |||
def forward(self, x): | |||
raise NotImplementedError | |||
def _greedy_decoder(self, arc_matrix, seq_mask=None): | |||
_, seq_len, _ = arc_matrix.shape | |||
matrix = arc_matrix + torch.diag(arc_matrix.new(seq_len).fill_(-np.inf)) | |||
_, heads = torch.max(matrix, dim=2) | |||
if seq_mask is not None: | |||
heads *= seq_mask.long() | |||
return heads | |||
def _mst_decoder(self, arc_matrix, seq_mask=None): | |||
batch_size, seq_len, _ = arc_matrix.shape | |||
matrix = torch.zeros_like(arc_matrix).copy_(arc_matrix) | |||
ans = matrix.new_zeros(batch_size, seq_len).long() | |||
for i, graph in enumerate(matrix): | |||
ans[i] = torch.as_tensor(mst(graph.cpu().numpy()), device=ans.device) | |||
if seq_mask is not None: | |||
ans *= seq_mask.long() | |||
return ans | |||
class ArcBiaffine(nn.Module): | |||
"""helper module for Biaffine Dependency Parser predicting arc | |||
""" | |||
def __init__(self, hidden_size, bias=True): | |||
super(ArcBiaffine, self).__init__() | |||
self.U = nn.Parameter(torch.Tensor(hidden_size, hidden_size), requires_grad=True) | |||
self.has_bias = bias | |||
if self.has_bias: | |||
self.bias = nn.Parameter(torch.Tensor(hidden_size), requires_grad=True) | |||
else: | |||
self.register_parameter("bias", None) | |||
initial_parameter(self) | |||
def forward(self, head, dep): | |||
""" | |||
:param head arc-head tensor = [batch, length, emb_dim] | |||
:param dep arc-dependent tensor = [batch, length, emb_dim] | |||
:return output tensor = [bacth, length, length] | |||
""" | |||
output = dep.matmul(self.U) | |||
output = output.bmm(head.transpose(-1, -2)) | |||
if self.has_bias: | |||
output += head.matmul(self.bias).unsqueeze(1) | |||
return output | |||
class LabelBilinear(nn.Module): | |||
"""helper module for Biaffine Dependency Parser predicting label | |||
""" | |||
def __init__(self, in1_features, in2_features, num_label, bias=True): | |||
super(LabelBilinear, self).__init__() | |||
self.bilinear = nn.Bilinear(in1_features, in2_features, num_label, bias=bias) | |||
self.lin1 = nn.Linear(in1_features, num_label, bias=False) | |||
self.lin2 = nn.Linear(in2_features, num_label, bias=False) | |||
def forward(self, x1, x2): | |||
output = self.bilinear(x1, x2) | |||
output += self.lin1(x1) + self.lin2(x2) | |||
return output | |||
class BiaffineParser(GraphParser): | |||
"""Biaffine Dependency Parser implemantation. | |||
refer to ` Deep Biaffine Attention for Neural Dependency Parsing (Dozat and Manning, 2016) | |||
<https://arxiv.org/abs/1611.01734>`_ . | |||
""" | |||
def __init__(self, | |||
word_vocab_size, | |||
word_emb_dim, | |||
pos_vocab_size, | |||
pos_emb_dim, | |||
rnn_layers, | |||
rnn_hidden_size, | |||
arc_mlp_size, | |||
label_mlp_size, | |||
num_label, | |||
dropout, | |||
use_var_lstm=False, | |||
use_greedy_infer=False): | |||
super(BiaffineParser, self).__init__() | |||
self.word_embedding = nn.Embedding(num_embeddings=word_vocab_size, embedding_dim=word_emb_dim) | |||
self.pos_embedding = nn.Embedding(num_embeddings=pos_vocab_size, embedding_dim=pos_emb_dim) | |||
if use_var_lstm: | |||
self.lstm = VarLSTM(input_size=word_emb_dim + pos_emb_dim, | |||
hidden_size=rnn_hidden_size, | |||
num_layers=rnn_layers, | |||
bias=True, | |||
batch_first=True, | |||
input_dropout=dropout, | |||
hidden_dropout=dropout, | |||
bidirectional=True) | |||
else: | |||
self.lstm = nn.LSTM(input_size=word_emb_dim + pos_emb_dim, | |||
hidden_size=rnn_hidden_size, | |||
num_layers=rnn_layers, | |||
bias=True, | |||
batch_first=True, | |||
dropout=dropout, | |||
bidirectional=True) | |||
rnn_out_size = 2 * rnn_hidden_size | |||
self.arc_head_mlp = nn.Sequential(nn.Linear(rnn_out_size, arc_mlp_size), | |||
nn.ELU()) | |||
self.arc_dep_mlp = copy.deepcopy(self.arc_head_mlp) | |||
self.label_head_mlp = nn.Sequential(nn.Linear(rnn_out_size, label_mlp_size), | |||
nn.ELU()) | |||
self.label_dep_mlp = copy.deepcopy(self.label_head_mlp) | |||
self.arc_predictor = ArcBiaffine(arc_mlp_size, bias=True) | |||
self.label_predictor = LabelBilinear(label_mlp_size, label_mlp_size, num_label, bias=True) | |||
self.normal_dropout = nn.Dropout(p=dropout) | |||
self.timestep_dropout = TimestepDropout(p=dropout) | |||
self.use_greedy_infer = use_greedy_infer | |||
initial_parameter(self) | |||
def forward(self, word_seq, pos_seq, seq_mask, gold_heads=None, **_): | |||
""" | |||
:param word_seq: [batch_size, seq_len] sequence of word's indices | |||
:param pos_seq: [batch_size, seq_len] sequence of word's indices | |||
:param seq_mask: [batch_size, seq_len] sequence of length masks | |||
:param gold_heads: [batch_size, seq_len] sequence of golden heads | |||
:return dict: parsing results | |||
arc_pred: [batch_size, seq_len, seq_len] | |||
label_pred: [batch_size, seq_len, seq_len] | |||
seq_mask: [batch_size, seq_len] | |||
head_pred: [batch_size, seq_len] if gold_heads is not provided, predicting the heads | |||
""" | |||
# prepare embeddings | |||
batch_size, seq_len = word_seq.shape | |||
# print('forward {} {}'.format(batch_size, seq_len)) | |||
batch_range = torch.arange(start=0, end=batch_size, dtype=torch.long, device=word_seq.device).unsqueeze(1) | |||
# get sequence mask | |||
seq_mask = seq_mask.long() | |||
word = self.normal_dropout(self.word_embedding(word_seq)) # [N,L] -> [N,L,C_0] | |||
pos = self.normal_dropout(self.pos_embedding(pos_seq)) # [N,L] -> [N,L,C_1] | |||
x = torch.cat([word, pos], dim=2) # -> [N,L,C] | |||
# lstm, extract features | |||
feat, _ = self.lstm(x) # -> [N,L,C] | |||
# for arc biaffine | |||
# mlp, reduce dim | |||
arc_dep = self.timestep_dropout(self.arc_dep_mlp(feat)) | |||
arc_head = self.timestep_dropout(self.arc_head_mlp(feat)) | |||
label_dep = self.timestep_dropout(self.label_dep_mlp(feat)) | |||
label_head = self.timestep_dropout(self.label_head_mlp(feat)) | |||
# biaffine arc classifier | |||
arc_pred = self.arc_predictor(arc_head, arc_dep) # [N, L, L] | |||
flip_mask = (seq_mask == 0) | |||
arc_pred.masked_fill_(flip_mask.unsqueeze(1), -np.inf) | |||
# use gold or predicted arc to predict label | |||
if gold_heads is None: | |||
# use greedy decoding in training | |||
if self.training or self.use_greedy_infer: | |||
heads = self._greedy_decoder(arc_pred, seq_mask) | |||
else: | |||
heads = self._mst_decoder(arc_pred, seq_mask) | |||
head_pred = heads | |||
else: | |||
head_pred = None | |||
heads = gold_heads | |||
label_head = label_head[batch_range, heads].contiguous() | |||
label_pred = self.label_predictor(label_head, label_dep) # [N, L, num_label] | |||
res_dict = {'arc_pred': arc_pred, 'label_pred': label_pred, 'seq_mask': seq_mask} | |||
if head_pred is not None: | |||
res_dict['head_pred'] = head_pred | |||
return res_dict | |||
def loss(self, arc_pred, label_pred, head_indices, head_labels, seq_mask, **_): | |||
""" | |||
Compute loss. | |||
:param arc_pred: [batch_size, seq_len, seq_len] | |||
:param label_pred: [batch_size, seq_len, seq_len] | |||
:param head_indices: [batch_size, seq_len] | |||
:param head_labels: [batch_size, seq_len] | |||
:param seq_mask: [batch_size, seq_len] | |||
:return: loss value | |||
""" | |||
batch_size, seq_len, _ = arc_pred.shape | |||
arc_logits = F.log_softmax(arc_pred, dim=2) | |||
label_logits = F.log_softmax(label_pred, dim=2) | |||
batch_index = torch.arange(start=0, end=batch_size, device=arc_logits.device).long().unsqueeze(1) | |||
child_index = torch.arange(start=0, end=seq_len, device=arc_logits.device).long().unsqueeze(0) | |||
arc_loss = arc_logits[batch_index, child_index, head_indices] | |||
label_loss = label_logits[batch_index, child_index, head_labels] | |||
arc_loss = arc_loss[:, 1:] | |||
label_loss = label_loss[:, 1:] | |||
float_mask = seq_mask[:, 1:].float() | |||
length = (seq_mask.sum() - batch_size).float() | |||
arc_nll = -(arc_loss*float_mask).sum() / length | |||
label_nll = -(label_loss*float_mask).sum() / length | |||
return arc_nll + label_nll | |||
def evaluate(self, arc_pred, label_pred, head_indices, head_labels, seq_mask, **kwargs): | |||
""" | |||
Evaluate the performance of prediction. | |||
:return dict: performance results. | |||
head_pred_corrct: number of correct predicted heads. | |||
label_pred_correct: number of correct predicted labels. | |||
total_tokens: number of predicted tokens | |||
""" | |||
if 'head_pred' in kwargs: | |||
head_pred = kwargs['head_pred'] | |||
elif self.use_greedy_infer: | |||
head_pred = self._greedy_decoder(arc_pred, seq_mask) | |||
else: | |||
head_pred = self._mst_decoder(arc_pred, seq_mask) | |||
head_pred_correct = (head_pred == head_indices).long() * seq_mask | |||
_, label_preds = torch.max(label_pred, dim=2) | |||
label_pred_correct = (label_preds == head_labels).long() * head_pred_correct | |||
return {"head_pred_correct": head_pred_correct.sum(dim=1), | |||
"label_pred_correct": label_pred_correct.sum(dim=1), | |||
"total_tokens": seq_mask.sum(dim=1)} | |||
def metrics(self, head_pred_correct, label_pred_correct, total_tokens, **_): | |||
""" | |||
Compute the metrics of model | |||
:param head_pred_corrct: number of correct predicted heads. | |||
:param label_pred_correct: number of correct predicted labels. | |||
:param total_tokens: number of predicted tokens | |||
:return dict: the metrics results | |||
UAS: the head predicted accuracy | |||
LAS: the label predicted accuracy | |||
""" | |||
return {"UAS": head_pred_correct.sum().float() / total_tokens.sum().float() * 100, | |||
"LAS": label_pred_correct.sum().float() / total_tokens.sum().float() * 100} | |||
@@ -0,0 +1,15 @@ | |||
import torch | |||
class TimestepDropout(torch.nn.Dropout): | |||
"""This module accepts a `[batch_size, num_timesteps, embedding_dim)]` and use a single | |||
dropout mask of shape `(batch_size, embedding_dim)` to apply on every time step. | |||
""" | |||
def forward(self, x): | |||
dropout_mask = x.new_ones(x.shape[0], x.shape[-1]) | |||
torch.nn.functional.dropout(dropout_mask, self.p, self.training, inplace=True) | |||
dropout_mask = dropout_mask.unsqueeze(1) # [batch_size, 1, embedding_dim] | |||
if self.inplace: | |||
x *= dropout_mask | |||
return | |||
else: | |||
return x * dropout_mask |
@@ -2,384 +2,153 @@ import math | |||
import torch | |||
import torch.nn as nn | |||
import torch.nn.functional as F | |||
from torch.nn._functions.thnn import rnnFusedPointwise as fusedBackend | |||
from torch.nn.parameter import Parameter | |||
from torch.nn.utils.rnn import PackedSequence | |||
from fastNLP.modules.utils import initial_parameter | |||
def default_initializer(hidden_size): | |||
stdv = 1.0 / math.sqrt(hidden_size) | |||
def forward(tensor): | |||
nn.init.uniform_(tensor, -stdv, stdv) | |||
return forward | |||
def VarMaskedRecurrent(reverse=False): | |||
def forward(input, hidden, cell, mask): | |||
output = [] | |||
steps = range(input.size(0) - 1, -1, -1) if reverse else range(input.size(0)) | |||
for i in steps: | |||
if mask is None or mask[i].data.min() > 0.5: | |||
hidden = cell(input[i], hidden) | |||
elif mask[i].data.max() > 0.5: | |||
hidden_next = cell(input[i], hidden) | |||
# hack to handle LSTM | |||
if isinstance(hidden, tuple): | |||
hx, cx = hidden | |||
hp1, cp1 = hidden_next | |||
hidden = (hx + (hp1 - hx) * mask[i], cx + (cp1 - cx) * mask[i]) | |||
else: | |||
hidden = hidden + (hidden_next - hidden) * mask[i] | |||
# hack to handle LSTM | |||
output.append(hidden[0] if isinstance(hidden, tuple) else hidden) | |||
if reverse: | |||
output.reverse() | |||
output = torch.cat(output, 0).view(input.size(0), *output[0].size()) | |||
return hidden, output | |||
return forward | |||
def StackedRNN(inners, num_layers, lstm=False): | |||
num_directions = len(inners) | |||
total_layers = num_layers * num_directions | |||
def forward(input, hidden, cells, mask): | |||
assert (len(cells) == total_layers) | |||
next_hidden = [] | |||
if lstm: | |||
hidden = list(zip(*hidden)) | |||
for i in range(num_layers): | |||
all_output = [] | |||
for j, inner in enumerate(inners): | |||
l = i * num_directions + j | |||
hy, output = inner(input, hidden[l], cells[l], mask) | |||
next_hidden.append(hy) | |||
all_output.append(output) | |||
input = torch.cat(all_output, input.dim() - 1) | |||
if lstm: | |||
next_h, next_c = zip(*next_hidden) | |||
next_hidden = ( | |||
torch.cat(next_h, 0).view(total_layers, *next_h[0].size()), | |||
torch.cat(next_c, 0).view(total_layers, *next_c[0].size()) | |||
) | |||
else: | |||
next_hidden = torch.cat(next_hidden, 0).view(total_layers, *next_hidden[0].size()) | |||
return next_hidden, input | |||
return forward | |||
def AutogradVarMaskedRNN(num_layers=1, batch_first=False, bidirectional=False, lstm=False): | |||
rec_factory = VarMaskedRecurrent | |||
if bidirectional: | |||
layer = (rec_factory(), rec_factory(reverse=True)) | |||
else: | |||
layer = (rec_factory(),) | |||
func = StackedRNN(layer, | |||
num_layers, | |||
lstm=lstm) | |||
def forward(input, cells, hidden, mask): | |||
if batch_first: | |||
input = input.transpose(0, 1) | |||
if mask is not None: | |||
mask = mask.transpose(0, 1) | |||
nexth, output = func(input, hidden, cells, mask) | |||
if batch_first: | |||
output = output.transpose(0, 1) | |||
return output, nexth | |||
return forward | |||
try: | |||
from torch import flip | |||
except ImportError: | |||
def flip(x, dims): | |||
indices = [slice(None)] * x.dim() | |||
for dim in dims: | |||
indices[dim] = torch.arange(x.size(dim) - 1, -1, -1, dtype=torch.long, device=x.device) | |||
return x[tuple(indices)] | |||
class VarRnnCellWrapper(nn.Module): | |||
"""Wrapper for normal RNN Cells, make it support variational dropout | |||
""" | |||
def __init__(self, cell, hidden_size, input_p, hidden_p): | |||
super(VarRnnCellWrapper, self).__init__() | |||
self.cell = cell | |||
self.hidden_size = hidden_size | |||
self.input_p = input_p | |||
self.hidden_p = hidden_p | |||
def VarMaskedStep(): | |||
def forward(input, hidden, cell, mask): | |||
if mask is None or mask.data.min() > 0.5: | |||
hidden = cell(input, hidden) | |||
elif mask.data.max() > 0.5: | |||
hidden_next = cell(input, hidden) | |||
# hack to handle LSTM | |||
if isinstance(hidden, tuple): | |||
def forward(self, input, hidden, mask_x=None, mask_h=None): | |||
""" | |||
:param input: [seq_len, batch_size, input_size] | |||
:param hidden: for LSTM, tuple of (h_0, c_0), [batch_size, hidden_size] | |||
for other RNN, h_0, [batch_size, hidden_size] | |||
:param mask_x: [batch_size, input_size] dropout mask for input | |||
:param mask_h: [batch_size, hidden_size] dropout mask for hidden | |||
:return output: [seq_len, bacth_size, hidden_size] | |||
hidden: for LSTM, tuple of (h_n, c_n), [batch_size, hidden_size] | |||
for other RNN, h_n, [batch_size, hidden_size] | |||
""" | |||
is_lstm = isinstance(hidden, tuple) | |||
input = input * mask_x.unsqueeze(0) if mask_x is not None else input | |||
output_list = [] | |||
for x in input: | |||
if is_lstm: | |||
hx, cx = hidden | |||
hp1, cp1 = hidden_next | |||
hidden = (hx + (hp1 - hx) * mask, cx + (cp1 - cx) * mask) | |||
hidden = (hx * mask_h, cx) if mask_h is not None else (hx, cx) | |||
else: | |||
hidden = hidden + (hidden_next - hidden) * mask | |||
# hack to handle LSTM | |||
output = hidden[0] if isinstance(hidden, tuple) else hidden | |||
return hidden, output | |||
return forward | |||
def StackedStep(layer, num_layers, lstm=False): | |||
def forward(input, hidden, cells, mask): | |||
assert (len(cells) == num_layers) | |||
next_hidden = [] | |||
if lstm: | |||
hidden = list(zip(*hidden)) | |||
for l in range(num_layers): | |||
hy, output = layer(input, hidden[l], cells[l], mask) | |||
next_hidden.append(hy) | |||
input = output | |||
if lstm: | |||
next_h, next_c = zip(*next_hidden) | |||
next_hidden = ( | |||
torch.cat(next_h, 0).view(num_layers, *next_h[0].size()), | |||
torch.cat(next_c, 0).view(num_layers, *next_c[0].size()) | |||
) | |||
else: | |||
next_hidden = torch.cat(next_hidden, 0).view(num_layers, *next_hidden[0].size()) | |||
return next_hidden, input | |||
return forward | |||
def AutogradVarMaskedStep(num_layers=1, lstm=False): | |||
layer = VarMaskedStep() | |||
func = StackedStep(layer, | |||
num_layers, | |||
lstm=lstm) | |||
def forward(input, cells, hidden, mask): | |||
nexth, output = func(input, hidden, cells, mask) | |||
return output, nexth | |||
return forward | |||
hidden *= mask_h if mask_h is not None else hidden | |||
hidden = self.cell(x, hidden) | |||
output_list.append(hidden[0] if is_lstm else hidden) | |||
output = torch.stack(output_list, dim=0) | |||
return output, hidden | |||
class VarMaskedRNNBase(nn.Module): | |||
def __init__(self, Cell, input_size, hidden_size, | |||
num_layers=1, bias=True, batch_first=False, | |||
dropout=(0, 0), bidirectional=False, initializer=None,initial_method = None, **kwargs): | |||
super(VarMaskedRNNBase, self).__init__() | |||
self.Cell = Cell | |||
class VarRNNBase(nn.Module): | |||
"""Implementation of Variational Dropout RNN network. | |||
refer to `A Theoretically Grounded Application of Dropout in Recurrent Neural Networks (Yarin Gal and Zoubin Ghahramani, 2016) | |||
https://arxiv.org/abs/1512.05287`. | |||
""" | |||
def __init__(self, mode, Cell, input_size, hidden_size, num_layers=1, | |||
bias=True, batch_first=False, | |||
input_dropout=0, hidden_dropout=0, bidirectional=False): | |||
super(VarRNNBase, self).__init__() | |||
self.mode = mode | |||
self.input_size = input_size | |||
self.hidden_size = hidden_size | |||
self.num_layers = num_layers | |||
self.bias = bias | |||
self.batch_first = batch_first | |||
self.input_dropout = input_dropout | |||
self.hidden_dropout = hidden_dropout | |||
self.bidirectional = bidirectional | |||
self.lstm = False | |||
num_directions = 2 if bidirectional else 1 | |||
self.all_cells = [] | |||
for layer in range(num_layers): | |||
for direction in range(num_directions): | |||
layer_input_size = input_size if layer == 0 else hidden_size * num_directions | |||
cell = self.Cell(layer_input_size, hidden_size, self.bias, p=dropout, initializer=initializer, **kwargs) | |||
self.all_cells.append(cell) | |||
self.add_module('cell%d' % (layer * num_directions + direction), cell) | |||
initial_parameter(self, initial_method) | |||
def reset_parameters(self): | |||
for cell in self.all_cells: | |||
cell.reset_parameters() | |||
def reset_noise(self, batch_size): | |||
for cell in self.all_cells: | |||
cell.reset_noise(batch_size) | |||
self.num_directions = 2 if bidirectional else 1 | |||
self._all_cells = nn.ModuleList() | |||
for layer in range(self.num_layers): | |||
for direction in range(self.num_directions): | |||
input_size = self.input_size if layer == 0 else self.hidden_size * self.num_directions | |||
cell = Cell(input_size, self.hidden_size, bias) | |||
self._all_cells.append(VarRnnCellWrapper(cell, self.hidden_size, input_dropout, hidden_dropout)) | |||
initial_parameter(self) | |||
def forward(self, input, hx=None): | |||
is_packed = isinstance(input, PackedSequence) | |||
is_lstm = (self.mode == "LSTM") | |||
if is_packed: | |||
input, batch_sizes = input | |||
max_batch_size = int(batch_sizes[0]) | |||
else: | |||
batch_sizes = None | |||
max_batch_size = input.size(0) if self.batch_first else input.size(1) | |||
def forward(self, input, mask=None, hx=None): | |||
batch_size = input.size(0) if self.batch_first else input.size(1) | |||
if hx is None: | |||
num_directions = 2 if self.bidirectional else 1 | |||
hx = torch.tensor(input.data.new(self.num_layers * num_directions, batch_size, self.hidden_size).zero_(), | |||
requires_grad=True) | |||
if self.lstm: | |||
hx = input.new_zeros(self.num_layers * self.num_directions, | |||
max_batch_size, self.hidden_size, | |||
requires_grad=False) | |||
if is_lstm: | |||
hx = (hx, hx) | |||
func = AutogradVarMaskedRNN(num_layers=self.num_layers, | |||
batch_first=self.batch_first, | |||
bidirectional=self.bidirectional, | |||
lstm=self.lstm) | |||
self.reset_noise(batch_size) | |||
output, hidden = func(input, self.all_cells, hx, None if mask is None else mask.view(mask.size() + (1,))) | |||
return output, hidden | |||
def step(self, input, hx=None, mask=None): | |||
''' | |||
execute one step forward (only for one-directional RNN). | |||
Args: | |||
input (batch, input_size): input tensor of this step. | |||
hx (num_layers, batch, hidden_size): the hidden state of last step. | |||
mask (batch): the mask tensor of this step. | |||
Returns: | |||
output (batch, hidden_size): tensor containing the output of this step from the last layer of RNN. | |||
hn (num_layers, batch, hidden_size): tensor containing the hidden state of this step | |||
''' | |||
assert not self.bidirectional, "step only cannot be applied to bidirectional RNN." | |||
batch_size = input.size(0) | |||
if hx is None: | |||
hx = torch.tensor(input.data.new(self.num_layers, batch_size, self.hidden_size).zero_(), requires_grad=True) | |||
if self.lstm: | |||
hx = (hx, hx) | |||
if self.batch_first: | |||
input = input.transpose(0, 1) | |||
batch_size = input.shape[1] | |||
mask_x = input.new_ones((batch_size, self.input_size)) | |||
mask_out = input.new_ones((batch_size, self.hidden_size * self.num_directions)) | |||
mask_h = input.new_ones((batch_size, self.hidden_size)) | |||
nn.functional.dropout(mask_x, p=self.input_dropout, training=self.training, inplace=True) | |||
nn.functional.dropout(mask_out, p=self.hidden_dropout, training=self.training, inplace=True) | |||
nn.functional.dropout(mask_h, p=self.hidden_dropout, training=self.training, inplace=True) | |||
hidden_list = [] | |||
for layer in range(self.num_layers): | |||
output_list = [] | |||
for direction in range(self.num_directions): | |||
input_x = input if direction == 0 else flip(input, [0]) | |||
idx = self.num_directions * layer + direction | |||
cell = self._all_cells[idx] | |||
hi = (hx[0][idx], hx[1][idx]) if is_lstm else hx[idx] | |||
mask_xi = mask_x if layer == 0 else mask_out | |||
output_x, hidden_x = cell(input_x, hi, mask_xi, mask_h) | |||
output_list.append(output_x if direction == 0 else flip(output_x, [0])) | |||
hidden_list.append(hidden_x) | |||
input = torch.cat(output_list, dim=-1) | |||
output = input.transpose(0, 1) if self.batch_first else input | |||
if is_lstm: | |||
h_list, c_list = zip(*hidden_list) | |||
hn = torch.stack(h_list, dim=0) | |||
cn = torch.stack(c_list, dim=0) | |||
hidden = (hn, cn) | |||
else: | |||
hidden = torch.stack(hidden_list, dim=0) | |||
func = AutogradVarMaskedStep(num_layers=self.num_layers, lstm=self.lstm) | |||
if is_packed: | |||
output = PackedSequence(output, batch_sizes) | |||
output, hidden = func(input, self.all_cells, hx, mask) | |||
return output, hidden | |||
class VarMaskedFastLSTM(VarMaskedRNNBase): | |||
class VarLSTM(VarRNNBase): | |||
"""Variational Dropout LSTM. | |||
""" | |||
def __init__(self, *args, **kwargs): | |||
super(VarMaskedFastLSTM, self).__init__(VarFastLSTMCell, *args, **kwargs) | |||
self.lstm = True | |||
class VarRNNCellBase(nn.Module): | |||
def __repr__(self): | |||
s = '{name}({input_size}, {hidden_size}' | |||
if 'bias' in self.__dict__ and self.bias is not True: | |||
s += ', bias={bias}' | |||
if 'nonlinearity' in self.__dict__ and self.nonlinearity != "tanh": | |||
s += ', nonlinearity={nonlinearity}' | |||
s += ')' | |||
return s.format(name=self.__class__.__name__, **self.__dict__) | |||
super(VarLSTM, self).__init__(mode="LSTM", Cell=nn.LSTMCell, *args, **kwargs) | |||
def reset_noise(self, batch_size): | |||
""" | |||
Should be overriden by all subclasses. | |||
Args: | |||
batch_size: (int) batch size of input. | |||
""" | |||
raise NotImplementedError | |||
class VarFastLSTMCell(VarRNNCellBase): | |||
""" | |||
A long short-term memory (LSTM) cell with variational dropout. | |||
.. math:: | |||
\begin{array}{ll} | |||
i = \mathrm{sigmoid}(W_{ii} x + b_{ii} + W_{hi} h + b_{hi}) \\ | |||
f = \mathrm{sigmoid}(W_{if} x + b_{if} + W_{hf} h + b_{hf}) \\ | |||
g = \tanh(W_{ig} x + b_{ig} + W_{hc} h + b_{hg}) \\ | |||
o = \mathrm{sigmoid}(W_{io} x + b_{io} + W_{ho} h + b_{ho}) \\ | |||
c' = f * c + i * g \\ | |||
h' = o * \tanh(c') \\ | |||
\end{array} | |||
class VarRNN(VarRNNBase): | |||
"""Variational Dropout RNN. | |||
""" | |||
def __init__(self, *args, **kwargs): | |||
super(VarRNN, self).__init__(mode="RNN", Cell=nn.RNNCell, *args, **kwargs) | |||
def __init__(self, input_size, hidden_size, bias=True, p=(0.5, 0.5), initializer=None,initial_method =None): | |||
super(VarFastLSTMCell, self).__init__() | |||
self.input_size = input_size | |||
self.hidden_size = hidden_size | |||
self.bias = bias | |||
self.weight_ih = Parameter(torch.Tensor(4 * hidden_size, input_size)) | |||
self.weight_hh = Parameter(torch.Tensor(4 * hidden_size, hidden_size)) | |||
if bias: | |||
self.bias_ih = Parameter(torch.Tensor(4 * hidden_size)) | |||
self.bias_hh = Parameter(torch.Tensor(4 * hidden_size)) | |||
else: | |||
self.register_parameter('bias_ih', None) | |||
self.register_parameter('bias_hh', None) | |||
self.initializer = default_initializer(self.hidden_size) if initializer is None else initializer | |||
self.reset_parameters() | |||
p_in, p_hidden = p | |||
if p_in < 0 or p_in > 1: | |||
raise ValueError("input dropout probability has to be between 0 and 1, " | |||
"but got {}".format(p_in)) | |||
if p_hidden < 0 or p_hidden > 1: | |||
raise ValueError("hidden state dropout probability has to be between 0 and 1, " | |||
"but got {}".format(p_hidden)) | |||
self.p_in = p_in | |||
self.p_hidden = p_hidden | |||
self.noise_in = None | |||
self.noise_hidden = None | |||
initial_parameter(self, initial_method) | |||
def reset_parameters(self): | |||
for weight in self.parameters(): | |||
if weight.dim() == 1: | |||
weight.data.zero_() | |||
else: | |||
self.initializer(weight.data) | |||
def reset_noise(self, batch_size): | |||
if self.training: | |||
if self.p_in: | |||
noise = self.weight_ih.data.new(batch_size, self.input_size) | |||
self.noise_in = torch.tensor(noise.bernoulli_(1.0 - self.p_in) / (1.0 - self.p_in)) | |||
else: | |||
self.noise_in = None | |||
if self.p_hidden: | |||
noise = self.weight_hh.data.new(batch_size, self.hidden_size) | |||
self.noise_hidden = torch.tensor(noise.bernoulli_(1.0 - self.p_hidden) / (1.0 - self.p_hidden)) | |||
else: | |||
self.noise_hidden = None | |||
else: | |||
self.noise_in = None | |||
self.noise_hidden = None | |||
def forward(self, input, hx): | |||
return self.__forward( | |||
input, hx, | |||
self.weight_ih, self.weight_hh, | |||
self.bias_ih, self.bias_hh, | |||
self.noise_in, self.noise_hidden, | |||
) | |||
@staticmethod | |||
def __forward(input, hidden, w_ih, w_hh, b_ih=None, b_hh=None, noise_in=None, noise_hidden=None): | |||
if noise_in is not None: | |||
if input.is_cuda: | |||
input = input * noise_in.cuda(input.get_device()) | |||
else: | |||
input = input * noise_in | |||
if input.is_cuda: | |||
w_ih = w_ih.cuda(input.get_device()) | |||
w_hh = w_hh.cuda(input.get_device()) | |||
hidden = [h.cuda(input.get_device()) for h in hidden] | |||
b_ih = b_ih.cuda(input.get_device()) | |||
b_hh = b_hh.cuda(input.get_device()) | |||
igates = F.linear(input, w_ih.cuda(input.get_device())) | |||
hgates = F.linear(hidden[0], w_hh) if noise_hidden is None \ | |||
else F.linear(hidden[0] * noise_hidden.cuda(input.get_device()), w_hh) | |||
state = fusedBackend.LSTMFused.apply | |||
# print("use backend") | |||
# use some magic function | |||
return state(igates, hgates, hidden[1]) if b_ih is None else state(igates, hgates, hidden[1], b_ih, b_hh) | |||
hx, cx = hidden | |||
if noise_hidden is not None: | |||
hx = hx * noise_hidden | |||
gates = F.linear(input, w_ih, b_ih) + F.linear(hx, w_hh, b_hh) | |||
ingate, forgetgate, cellgate, outgate = gates.chunk(4, 1) | |||
ingate = F.sigmoid(ingate) | |||
forgetgate = F.sigmoid(forgetgate) | |||
cellgate = F.tanh(cellgate) | |||
outgate = F.sigmoid(outgate) | |||
cy = (forgetgate * cx) + (ingate * cellgate) | |||
hy = outgate * F.tanh(cy) | |||
return hy, cy | |||
class VarGRU(VarRNNBase): | |||
"""Variational Dropout GRU. | |||
""" | |||
def __init__(self, *args, **kwargs): | |||
super(VarGRU, self).__init__(mode="GRU", Cell=nn.GRUCell, *args, **kwargs) |
@@ -0,0 +1,37 @@ | |||
[train] | |||
epochs = 50 | |||
batch_size = 16 | |||
pickle_path = "./save/" | |||
validate = true | |||
save_best_dev = false | |||
use_cuda = true | |||
model_saved_path = "./save/" | |||
task = "parse" | |||
[test] | |||
save_output = true | |||
validate_in_training = true | |||
save_dev_input = false | |||
save_loss = true | |||
batch_size = 16 | |||
pickle_path = "./save/" | |||
use_cuda = true | |||
task = "parse" | |||
[model] | |||
word_vocab_size = -1 | |||
word_emb_dim = 100 | |||
pos_vocab_size = -1 | |||
pos_emb_dim = 100 | |||
rnn_layers = 3 | |||
rnn_hidden_size = 400 | |||
arc_mlp_size = 500 | |||
label_mlp_size = 100 | |||
num_label = -1 | |||
dropout = 0.33 | |||
use_var_lstm=true | |||
use_greedy_infer=false | |||
[optim] | |||
lr = 2e-3 |
@@ -0,0 +1,260 @@ | |||
import os | |||
import sys | |||
sys.path.append(os.path.join(os.path.dirname(__file__), '../..')) | |||
from collections import defaultdict | |||
import math | |||
import torch | |||
from fastNLP.core.trainer import Trainer | |||
from fastNLP.core.instance import Instance | |||
from fastNLP.core.vocabulary import Vocabulary | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.core.batch import Batch | |||
from fastNLP.core.sampler import SequentialSampler | |||
from fastNLP.core.field import TextField, SeqLabelField | |||
from fastNLP.core.preprocess import SeqLabelPreprocess, load_pickle | |||
from fastNLP.core.tester import Tester | |||
from fastNLP.loader.config_loader import ConfigLoader, ConfigSection | |||
from fastNLP.loader.model_loader import ModelLoader | |||
from fastNLP.loader.embed_loader import EmbedLoader | |||
from fastNLP.models.biaffine_parser import BiaffineParser | |||
from fastNLP.saver.model_saver import ModelSaver | |||
# not in the file's dir | |||
if len(os.path.dirname(__file__)) != 0: | |||
os.chdir(os.path.dirname(__file__)) | |||
class MyDataLoader(object): | |||
def __init__(self, pickle_path): | |||
self.pickle_path = pickle_path | |||
def load(self, path, word_v=None, pos_v=None, headtag_v=None): | |||
datalist = [] | |||
with open(path, 'r', encoding='utf-8') as f: | |||
sample = [] | |||
for line in f: | |||
if line.startswith('\n'): | |||
datalist.append(sample) | |||
sample = [] | |||
elif line.startswith('#'): | |||
continue | |||
else: | |||
sample.append(line.split('\t')) | |||
if len(sample) > 0: | |||
datalist.append(sample) | |||
ds = DataSet(name='conll') | |||
for sample in datalist: | |||
# print(sample) | |||
res = self.get_one(sample) | |||
if word_v is not None: | |||
word_v.update(res[0]) | |||
pos_v.update(res[1]) | |||
headtag_v.update(res[3]) | |||
ds.append(Instance(word_seq=TextField(res[0], is_target=False), | |||
pos_seq=TextField(res[1], is_target=False), | |||
head_indices=SeqLabelField(res[2], is_target=True), | |||
head_labels=TextField(res[3], is_target=True), | |||
seq_mask=SeqLabelField([1 for _ in range(len(res[0]))], is_target=False))) | |||
return ds | |||
def get_one(self, sample): | |||
text = ['<root>'] | |||
pos_tags = ['<root>'] | |||
heads = [0] | |||
head_tags = ['root'] | |||
for w in sample: | |||
t1, t2, t3, t4 = w[1], w[3], w[6], w[7] | |||
if t3 == '_': | |||
continue | |||
text.append(t1) | |||
pos_tags.append(t2) | |||
heads.append(int(t3)) | |||
head_tags.append(t4) | |||
return (text, pos_tags, heads, head_tags) | |||
def index_data(self, dataset, word_v, pos_v, tag_v): | |||
dataset.index_field('word_seq', word_v) | |||
dataset.index_field('pos_seq', pos_v) | |||
dataset.index_field('head_labels', tag_v) | |||
# datadir = "/mnt/c/Me/Dev/release-2.2-st-train-dev-data/ud-treebanks-v2.2/UD_English-EWT" | |||
datadir = "/home/yfshao/UD_English-EWT" | |||
cfgfile = './cfg.cfg' | |||
train_data_name = "en_ewt-ud-train.conllu" | |||
dev_data_name = "en_ewt-ud-dev.conllu" | |||
emb_file_name = '/home/yfshao/glove.6B.100d.txt' | |||
processed_datadir = './save' | |||
# Config Loader | |||
train_args = ConfigSection() | |||
test_args = ConfigSection() | |||
model_args = ConfigSection() | |||
optim_args = ConfigSection() | |||
ConfigLoader.load_config(cfgfile, {"train": train_args, "test": test_args, "model": model_args, "optim": optim_args}) | |||
# Data Loader | |||
def save_data(dirpath, **kwargs): | |||
import _pickle | |||
if not os.path.exists(dirpath): | |||
os.mkdir(dirpath) | |||
for name, data in kwargs.items(): | |||
with open(os.path.join(dirpath, name+'.pkl'), 'wb') as f: | |||
_pickle.dump(data, f) | |||
def load_data(dirpath): | |||
import _pickle | |||
datas = {} | |||
for f_name in os.listdir(dirpath): | |||
if not f_name.endswith('.pkl'): | |||
continue | |||
name = f_name[:-4] | |||
with open(os.path.join(dirpath, f_name), 'rb') as f: | |||
datas[name] = _pickle.load(f) | |||
return datas | |||
class MyTester(object): | |||
def __init__(self, batch_size, use_cuda=False, **kwagrs): | |||
self.batch_size = batch_size | |||
self.use_cuda = use_cuda | |||
def test(self, model, dataset): | |||
self.model = model.cuda() if self.use_cuda else model | |||
self.model.eval() | |||
batchiter = Batch(dataset, self.batch_size, SequentialSampler(), self.use_cuda) | |||
eval_res = defaultdict(list) | |||
i = 0 | |||
for batch_x, batch_y in batchiter: | |||
with torch.no_grad(): | |||
pred_y = self.model(**batch_x) | |||
eval_one = self.model.evaluate(**pred_y, **batch_y) | |||
i += self.batch_size | |||
for eval_name, tensor in eval_one.items(): | |||
eval_res[eval_name].append(tensor) | |||
tmp = {} | |||
for eval_name, tensorlist in eval_res.items(): | |||
tmp[eval_name] = torch.cat(tensorlist, dim=0) | |||
self.res = self.model.metrics(**tmp) | |||
def show_metrics(self): | |||
s = "" | |||
for name, val in self.res.items(): | |||
s += '{}: {:.2f}\t'.format(name, val) | |||
return s | |||
loader = MyDataLoader('') | |||
try: | |||
data_dict = load_data(processed_datadir) | |||
word_v = data_dict['word_v'] | |||
pos_v = data_dict['pos_v'] | |||
tag_v = data_dict['tag_v'] | |||
train_data = data_dict['train_data'] | |||
dev_data = data_dict['dev_data'] | |||
print('use saved pickles') | |||
except Exception as _: | |||
print('load raw data and preprocess') | |||
word_v = Vocabulary(need_default=True, min_freq=2) | |||
pos_v = Vocabulary(need_default=True) | |||
tag_v = Vocabulary(need_default=False) | |||
train_data = loader.load(os.path.join(datadir, train_data_name), word_v, pos_v, tag_v) | |||
dev_data = loader.load(os.path.join(datadir, dev_data_name)) | |||
save_data(processed_datadir, word_v=word_v, pos_v=pos_v, tag_v=tag_v, train_data=train_data, dev_data=dev_data) | |||
loader.index_data(train_data, word_v, pos_v, tag_v) | |||
loader.index_data(dev_data, word_v, pos_v, tag_v) | |||
print(len(train_data)) | |||
print(len(dev_data)) | |||
ep = train_args['epochs'] | |||
train_args['epochs'] = math.ceil(50000.0 / len(train_data) * train_args['batch_size']) if ep <= 0 else ep | |||
model_args['word_vocab_size'] = len(word_v) | |||
model_args['pos_vocab_size'] = len(pos_v) | |||
model_args['num_label'] = len(tag_v) | |||
def train(): | |||
# Trainer | |||
trainer = Trainer(**train_args.data) | |||
def _define_optim(obj): | |||
obj._optimizer = torch.optim.Adam(obj._model.parameters(), **optim_args.data) | |||
obj._scheduler = torch.optim.lr_scheduler.LambdaLR(obj._optimizer, lambda ep: .75 ** (ep / 5e4)) | |||
def _update(obj): | |||
obj._scheduler.step() | |||
obj._optimizer.step() | |||
trainer.define_optimizer = lambda: _define_optim(trainer) | |||
trainer.update = lambda: _update(trainer) | |||
trainer.get_loss = lambda predict, truth: trainer._loss_func(**predict, **truth) | |||
trainer._create_validator = lambda x: MyTester(**test_args.data) | |||
# Model | |||
model = BiaffineParser(**model_args.data) | |||
# use pretrain embedding | |||
embed, _ = EmbedLoader.load_embedding(model_args['word_emb_dim'], emb_file_name, 'glove', word_v, os.path.join(processed_datadir, 'word_emb.pkl')) | |||
model.word_embedding = torch.nn.Embedding.from_pretrained(embed, freeze=False) | |||
model.word_embedding.padding_idx = word_v.padding_idx | |||
model.word_embedding.weight.data[word_v.padding_idx].fill_(0) | |||
model.pos_embedding.padding_idx = pos_v.padding_idx | |||
model.pos_embedding.weight.data[pos_v.padding_idx].fill_(0) | |||
try: | |||
ModelLoader.load_pytorch(model, "./save/saved_model.pkl") | |||
print('model parameter loaded!') | |||
except Exception as _: | |||
print("No saved model. Continue.") | |||
pass | |||
# Start training | |||
trainer.train(model, train_data, dev_data) | |||
print("Training finished!") | |||
# Saver | |||
saver = ModelSaver("./save/saved_model.pkl") | |||
saver.save_pytorch(model) | |||
print("Model saved!") | |||
def test(): | |||
# Tester | |||
tester = MyTester(**test_args.data) | |||
# Model | |||
model = BiaffineParser(**model_args.data) | |||
try: | |||
ModelLoader.load_pytorch(model, "./save/saved_model.pkl") | |||
print('model parameter loaded!') | |||
except Exception as _: | |||
print("No saved model. Abort test.") | |||
raise | |||
# Start training | |||
tester.test(model, dev_data) | |||
print(tester.show_metrics()) | |||
print("Testing finished!") | |||
if __name__ == "__main__": | |||
import argparse | |||
parser = argparse.ArgumentParser(description='Run a chinese word segmentation model') | |||
parser.add_argument('--mode', help='set the model\'s model', choices=['train', 'test', 'infer']) | |||
args = parser.parse_args() | |||
if args.mode == 'train': | |||
train() | |||
elif args.mode == 'test': | |||
test() | |||
elif args.mode == 'infer': | |||
infer() | |||
else: | |||
print('no mode specified for model!') | |||
parser.print_help() |
@@ -0,0 +1,12 @@ | |||
the 0.418 0.24968 -0.41242 0.1217 0.34527 -0.044457 -0.49688 -0.17862 -0.00066023 -0.6566 0.27843 -0.14767 -0.55677 0.14658 -0.0095095 0.011658 0.10204 -0.12792 -0.8443 -0.12181 -0.016801 -0.33279 -0.1552 -0.23131 -0.19181 -1.8823 -0.76746 0.099051 -0.42125 -0.19526 4.0071 -0.18594 -0.52287 -0.31681 0.00059213 0.0074449 0.17778 -0.15897 0.012041 -0.054223 -0.29871 -0.15749 -0.34758 -0.045637 -0.44251 0.18785 0.0027849 -0.18411 -0.11514 -0.78581 | |||
, 0.013441 0.23682 -0.16899 0.40951 0.63812 0.47709 -0.42852 -0.55641 -0.364 -0.23938 0.13001 -0.063734 -0.39575 -0.48162 0.23291 0.090201 -0.13324 0.078639 -0.41634 -0.15428 0.10068 0.48891 0.31226 -0.1252 -0.037512 -1.5179 0.12612 -0.02442 -0.042961 -0.28351 3.5416 -0.11956 -0.014533 -0.1499 0.21864 -0.33412 -0.13872 0.31806 0.70358 0.44858 -0.080262 0.63003 0.32111 -0.46765 0.22786 0.36034 -0.37818 -0.56657 0.044691 0.30392 | |||
. 0.15164 0.30177 -0.16763 0.17684 0.31719 0.33973 -0.43478 -0.31086 -0.44999 -0.29486 0.16608 0.11963 -0.41328 -0.42353 0.59868 0.28825 -0.11547 -0.041848 -0.67989 -0.25063 0.18472 0.086876 0.46582 0.015035 0.043474 -1.4671 -0.30384 -0.023441 0.30589 -0.21785 3.746 0.0042284 -0.18436 -0.46209 0.098329 -0.11907 0.23919 0.1161 0.41705 0.056763 -6.3681e-05 0.068987 0.087939 -0.10285 -0.13931 0.22314 -0.080803 -0.35652 0.016413 0.10216 | |||
of 0.70853 0.57088 -0.4716 0.18048 0.54449 0.72603 0.18157 -0.52393 0.10381 -0.17566 0.078852 -0.36216 -0.11829 -0.83336 0.11917 -0.16605 0.061555 -0.012719 -0.56623 0.013616 0.22851 -0.14396 -0.067549 -0.38157 -0.23698 -1.7037 -0.86692 -0.26704 -0.2589 0.1767 3.8676 -0.1613 -0.13273 -0.68881 0.18444 0.0052464 -0.33874 -0.078956 0.24185 0.36576 -0.34727 0.28483 0.075693 -0.062178 -0.38988 0.22902 -0.21617 -0.22562 -0.093918 -0.80375 | |||
to 0.68047 -0.039263 0.30186 -0.17792 0.42962 0.032246 -0.41376 0.13228 -0.29847 -0.085253 0.17118 0.22419 -0.10046 -0.43653 0.33418 0.67846 0.057204 -0.34448 -0.42785 -0.43275 0.55963 0.10032 0.18677 -0.26854 0.037334 -2.0932 0.22171 -0.39868 0.20912 -0.55725 3.8826 0.47466 -0.95658 -0.37788 0.20869 -0.32752 0.12751 0.088359 0.16351 -0.21634 -0.094375 0.018324 0.21048 -0.03088 -0.19722 0.082279 -0.09434 -0.073297 -0.064699 -0.26044 | |||
and 0.26818 0.14346 -0.27877 0.016257 0.11384 0.69923 -0.51332 -0.47368 -0.33075 -0.13834 0.2702 0.30938 -0.45012 -0.4127 -0.09932 0.038085 0.029749 0.10076 -0.25058 -0.51818 0.34558 0.44922 0.48791 -0.080866 -0.10121 -1.3777 -0.10866 -0.23201 0.012839 -0.46508 3.8463 0.31362 0.13643 -0.52244 0.3302 0.33707 -0.35601 0.32431 0.12041 0.3512 -0.069043 0.36885 0.25168 -0.24517 0.25381 0.1367 -0.31178 -0.6321 -0.25028 -0.38097 | |||
in 0.33042 0.24995 -0.60874 0.10923 0.036372 0.151 -0.55083 -0.074239 -0.092307 -0.32821 0.09598 -0.82269 -0.36717 -0.67009 0.42909 0.016496 -0.23573 0.12864 -1.0953 0.43334 0.57067 -0.1036 0.20422 0.078308 -0.42795 -1.7984 -0.27865 0.11954 -0.12689 0.031744 3.8631 -0.17786 -0.082434 -0.62698 0.26497 -0.057185 -0.073521 0.46103 0.30862 0.12498 -0.48609 -0.0080272 0.031184 -0.36576 -0.42699 0.42164 -0.11666 -0.50703 -0.027273 -0.53285 | |||
a 0.21705 0.46515 -0.46757 0.10082 1.0135 0.74845 -0.53104 -0.26256 0.16812 0.13182 -0.24909 -0.44185 -0.21739 0.51004 0.13448 -0.43141 -0.03123 0.20674 -0.78138 -0.20148 -0.097401 0.16088 -0.61836 -0.18504 -0.12461 -2.2526 -0.22321 0.5043 0.32257 0.15313 3.9636 -0.71365 -0.67012 0.28388 0.21738 0.14433 0.25926 0.23434 0.4274 -0.44451 0.13813 0.36973 -0.64289 0.024142 -0.039315 -0.26037 0.12017 -0.043782 0.41013 0.1796 | |||
" 0.25769 0.45629 -0.76974 -0.37679 0.59272 -0.063527 0.20545 -0.57385 -0.29009 -0.13662 0.32728 1.4719 -0.73681 -0.12036 0.71354 -0.46098 0.65248 0.48887 -0.51558 0.039951 -0.34307 -0.014087 0.86488 0.3546 0.7999 -1.4995 -1.8153 0.41128 0.23921 -0.43139 3.6623 -0.79834 -0.54538 0.16943 -0.82017 -0.3461 0.69495 -1.2256 -0.17992 -0.057474 0.030498 -0.39543 -0.38515 -1.0002 0.087599 -0.31009 -0.34677 -0.31438 0.75004 0.97065 | |||
's 0.23727 0.40478 -0.20547 0.58805 0.65533 0.32867 -0.81964 -0.23236 0.27428 0.24265 0.054992 0.16296 -1.2555 -0.086437 0.44536 0.096561 -0.16519 0.058378 -0.38598 0.086977 0.0033869 0.55095 -0.77697 -0.62096 0.092948 -2.5685 -0.67739 0.10151 -0.48643 -0.057805 3.1859 -0.017554 -0.16138 0.055486 -0.25885 -0.33938 -0.19928 0.26049 0.10478 -0.55934 -0.12342 0.65961 -0.51802 -0.82995 -0.082739 0.28155 -0.423 -0.27378 -0.007901 -0.030231 | |||
@@ -0,0 +1,33 @@ | |||
import unittest | |||
import os | |||
import torch | |||
from fastNLP.loader.embed_loader import EmbedLoader | |||
from fastNLP.core.vocabulary import Vocabulary | |||
class TestEmbedLoader(unittest.TestCase): | |||
glove_path = './test/data_for_tests/glove.6B.50d_test.txt' | |||
pkl_path = './save' | |||
raw_texts = ["i am a cat", | |||
"this is a test of new batch", | |||
"ha ha", | |||
"I am a good boy .", | |||
"This is the most beautiful girl ." | |||
] | |||
texts = [text.strip().split() for text in raw_texts] | |||
vocab = Vocabulary() | |||
vocab.update(texts) | |||
def test1(self): | |||
emb, _ = EmbedLoader.load_embedding(50, self.glove_path, 'glove', self.vocab, self.pkl_path) | |||
self.assertTrue(emb.shape[0] == (len(self.vocab))) | |||
self.assertTrue(emb.shape[1] == 50) | |||
os.remove(self.pkl_path) | |||
def test2(self): | |||
try: | |||
_ = EmbedLoader.load_embedding(100, self.glove_path, 'glove', self.vocab, self.pkl_path) | |||
self.fail(msg="load dismatch embedding") | |||
except ValueError: | |||
pass |
@@ -3,35 +3,23 @@ import unittest | |||
import numpy as np | |||
import torch | |||
from fastNLP.modules.encoder.variational_rnn import VarMaskedFastLSTM | |||
from fastNLP.modules.encoder.variational_rnn import VarLSTM | |||
class TestMaskedRnn(unittest.TestCase): | |||
def test_case_1(self): | |||
masked_rnn = VarMaskedFastLSTM(input_size=1, hidden_size=1, bidirectional=True, batch_first=True) | |||
masked_rnn = VarLSTM(input_size=1, hidden_size=1, bidirectional=True, batch_first=True) | |||
x = torch.tensor([[[1.0], [2.0]]]) | |||
print(x.size()) | |||
y = masked_rnn(x) | |||
mask = torch.tensor([[[1], [1]]]) | |||
y = masked_rnn(x, mask=mask) | |||
mask = torch.tensor([[[1], [0]]]) | |||
y = masked_rnn(x, mask=mask) | |||
def test_case_2(self): | |||
input_size = 12 | |||
batch = 16 | |||
hidden = 10 | |||
masked_rnn = VarMaskedFastLSTM(input_size=input_size, hidden_size=hidden, bidirectional=False, batch_first=True) | |||
x = torch.randn((batch, input_size)) | |||
output, _ = masked_rnn.step(x) | |||
self.assertEqual(tuple(output.shape), (batch, hidden)) | |||
masked_rnn = VarLSTM(input_size=input_size, hidden_size=hidden, bidirectional=False, batch_first=True) | |||
xx = torch.randn((batch, 32, input_size)) | |||
y, _ = masked_rnn(xx) | |||
self.assertEqual(tuple(y.shape), (batch, 32, hidden)) | |||
xx = torch.randn((batch, 32, input_size)) | |||
mask = torch.from_numpy(np.random.randint(0, 2, size=(batch, 32))).to(xx) | |||
y, _ = masked_rnn(xx, mask=mask) | |||
self.assertEqual(tuple(y.shape), (batch, 32, hidden)) |