diff --git a/fastNLP/core/callbacks/topk_saver.py b/fastNLP/core/callbacks/topk_saver.py index e1dac878..d2b9ad58 100644 --- a/fastNLP/core/callbacks/topk_saver.py +++ b/fastNLP/core/callbacks/topk_saver.py @@ -205,6 +205,8 @@ class TopkSaver(ResultsMonitor, Saver): def __init__(self, topk:int=0, monitor:str=None, larger_better:bool=True, folder:str=None, save_object:str='model', only_state_dict:bool=True, model_save_fn:Callable=None, save_evaluate_results:bool=True, **kwargs): + if topk is None: + topk = 0 ResultsMonitor.__init__(self, monitor, larger_better) Saver.__init__(self, folder, save_object, only_state_dict, model_save_fn, **kwargs) diff --git a/fastNLP/core/collators/padders/jittor_padder.py b/fastNLP/core/collators/padders/jittor_padder.py index 5fcc469b..5d942b99 100644 --- a/fastNLP/core/collators/padders/jittor_padder.py +++ b/fastNLP/core/collators/padders/jittor_padder.py @@ -134,7 +134,11 @@ class JittorTensorPadder(Padder): f"it must have tolist() method.") shapes = [field.shape for field in batch_field] - max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] + if len(batch_field) < 2: + max_shape = [len(batch_field)] + list(shapes[0]) + else: + max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] + # if dtype is not None: # tensor = jittor.full(max_shape, pad_val, dtype=dtype) # else: diff --git a/fastNLP/core/collators/padders/numpy_padder.py b/fastNLP/core/collators/padders/numpy_padder.py index 5f2d70a9..688c2859 100644 --- a/fastNLP/core/collators/padders/numpy_padder.py +++ b/fastNLP/core/collators/padders/numpy_padder.py @@ -97,7 +97,11 @@ class NumpyTensorPadder(Padder): f"it must have tolist() method.") shapes = [field.shape for field in batch_field] - max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] + if len(batch_field) < 2: + max_shape = [len(batch_field)] + list(shapes[0]) + else: + max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] + array = np.full(max_shape, fill_value=pad_val, dtype=dtype) for i, field in enumerate(batch_field): slices = (i, ) + tuple(slice(0, s) for s in shapes[i]) diff --git a/fastNLP/core/collators/padders/paddle_padder.py b/fastNLP/core/collators/padders/paddle_padder.py index a891eb9f..1aed4228 100644 --- a/fastNLP/core/collators/padders/paddle_padder.py +++ b/fastNLP/core/collators/padders/paddle_padder.py @@ -140,7 +140,11 @@ class PaddleTensorPadder(Padder): f"it must have tolist() method.") shapes = [field.shape for field in batch_field] - max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] + if len(batch_field) < 2: + max_shape = [len(batch_field)] + list(shapes[0]) + else: + max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] + if isinstance(batch_field[0], paddle.Tensor): array = paddle.full(max_shape, fill_value=pad_val, dtype=dtype) else: diff --git a/fastNLP/core/collators/padders/torch_padder.py b/fastNLP/core/collators/padders/torch_padder.py index 9ef2a12d..ce30abcb 100644 --- a/fastNLP/core/collators/padders/torch_padder.py +++ b/fastNLP/core/collators/padders/torch_padder.py @@ -132,7 +132,11 @@ class TorchTensorPadder(Padder): f"it must have tolist() method.") shapes = [field.shape for field in batch_field] - max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] + if len(batch_field) < 2: + max_shape = [len(batch_field)] + list(shapes[0]) + else: + max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] + tensor = torch.full(max_shape, fill_value=pad_val, dtype=dtype, device=device) for i, field in enumerate(batch_field): slices = (i, ) + tuple(slice(0, s) for s in shapes[i]) diff --git a/fastNLP/core/collators/padders/utils.py b/fastNLP/core/collators/padders/utils.py index b322897f..e4a258a8 100644 --- a/fastNLP/core/collators/padders/utils.py +++ b/fastNLP/core/collators/padders/utils.py @@ -32,7 +32,11 @@ def get_shape(batch_field:List, shape=None): if isinstance(batch_field[0], Sequence): for _field in batch_field: shapes.append(get_shape(_field, _shape)) - max_shape = [max(_) for _ in zip(*shapes)] + if len(shapes) == 1: + max_shape = shapes[0] + else: + max_shape = [max(_) for _ in zip(*shapes)] + return max_shape except IndexError: # 空的shape pass diff --git a/fastNLP/core/controllers/trainer.py b/fastNLP/core/controllers/trainer.py index df6bf176..81ddd3e8 100644 --- a/fastNLP/core/controllers/trainer.py +++ b/fastNLP/core/controllers/trainer.py @@ -618,9 +618,9 @@ class Trainer(TrainerEventTrigger): if not catch_KeyboardInterrupt: raise e except RuntimeError as e: - if 'torch' in self.driver_name.lower(): # 如果是 torch ,需要检测一下 find_unused_parameters + if 'torch' in self.driver_name.lower() and len(e.args) > 0: # 如果是 torch ,需要检测一下 find_unused_parameters if 'find_unused_parameters' in e.args[0]: - logger.error("You may need to pass `torch_ddp_kwargs={'find_unused_parameters': True}` in the " + logger.error("You may need to pass `torch_kwargs={'ddp_kwargs':{'find_unused_parameters': True}}` in the " "Trainer initialization to avoid this error.") self.driver.on_exception() self.on_exception(e) diff --git a/fastNLP/core/dataloaders/paddle_dataloader/fdl.py b/fastNLP/core/dataloaders/paddle_dataloader/fdl.py index a814f502..6082fb1a 100644 --- a/fastNLP/core/dataloaders/paddle_dataloader/fdl.py +++ b/fastNLP/core/dataloaders/paddle_dataloader/fdl.py @@ -249,7 +249,7 @@ class PaddleDataLoader(DataLoader): def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, return_list: bool = True, batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None, - train_batch_size: int = 1, shuffle: bool = False, + batch_size: int = 1, shuffle: bool = False, drop_last: bool = False, collate_fn: Union[Callable, str, None] = 'auto', num_workers: int = 0, use_buffer_reader: bool = True, use_shared_memory: bool = True, timeout: int = 0, @@ -259,7 +259,7 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, from fastNLP.io.data_bundle import DataBundle if isinstance(ds_or_db, Dataset): dl = PaddleDataLoader(ds_or_db, feed_list=feed_list, places=places, return_list=return_list, - batch_sampler=batch_sampler, batch_size=train_batch_size, shuffle=shuffle, + batch_sampler=batch_sampler, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, timeout=timeout, worker_init_fn=worker_init_fn, persistent_workers=persistent_workers) @@ -270,7 +270,7 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, if 'train' in name: dl_bundle[name] = PaddleDataLoader(ds, feed_list=feed_list, places=places, return_list=return_list, - batch_sampler=batch_sampler, batch_size=train_batch_size, + batch_sampler=batch_sampler, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, use_shared_memory=use_shared_memory, @@ -292,7 +292,7 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, ds_seq = [] for ds in ds_or_db: dl = PaddleDataLoader(ds, feed_list=feed_list, places=places, return_list=return_list, - batch_sampler=batch_sampler, batch_size=train_batch_size, shuffle=shuffle, + batch_sampler=batch_sampler, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, timeout=timeout, worker_init_fn=worker_init_fn, persistent_workers=persistent_workers) @@ -304,7 +304,7 @@ def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, for name, ds in ds_or_db.items(): if 'train' in name: dl = PaddleDataLoader(ds, feed_list=feed_list, places=places, return_list=return_list, - batch_sampler=batch_sampler, batch_size=train_batch_size, shuffle=shuffle, + batch_sampler=batch_sampler, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, collate_fn=collate_fn, num_workers=num_workers, use_shared_memory=use_shared_memory, use_buffer_reader=use_buffer_reader, timeout=timeout, worker_init_fn=worker_init_fn, diff --git a/fastNLP/core/dataloaders/prepare_dataloader.py b/fastNLP/core/dataloaders/prepare_dataloader.py index 33764c6f..591c919c 100644 --- a/fastNLP/core/dataloaders/prepare_dataloader.py +++ b/fastNLP/core/dataloaders/prepare_dataloader.py @@ -109,6 +109,9 @@ def _get_backend(): if len(available_backends) == 1: backend = available_backends.pop() logger.debug(f"Get Dataloader backend:{backend} from sys.modules.") + elif len(available_backends) > 1: + raise RuntimeError("Fail to detect dataloader backend automatically, because multiple backends:" + f"{available_backends} has been imported.") else: raise RuntimeError("Fail to detect dataloader backend automatically, please set it manually.") return backend \ No newline at end of file diff --git a/fastNLP/core/dataloaders/torch_dataloader/fdl.py b/fastNLP/core/dataloaders/torch_dataloader/fdl.py index 3be1c3f9..065504a6 100644 --- a/fastNLP/core/dataloaders/torch_dataloader/fdl.py +++ b/fastNLP/core/dataloaders/torch_dataloader/fdl.py @@ -78,9 +78,14 @@ class TorchDataLoader(DataLoader): if not isinstance(dataset, _FDataSet): dataset = _FDataSet(dataset) - if sampler is None and batch_sampler is None: + if batch_sampler is not None: + batch_size = 1 + shuffle = False + sampler = None + elif sampler is None: sampler = RandomSampler(dataset, shuffle=shuffle) shuffle = False + if isinstance(collate_fn, str): if collate_fn == 'auto': if isinstance(dataset.dataset, DataSet): # 使用了 fastnlp dataset @@ -179,7 +184,7 @@ class TorchDataLoader(DataLoader): def prepare_torch_dataloader(ds_or_db, - train_batch_size: int = 16, + batch_size: int = 16, shuffle: bool = False, sampler: Union["Sampler[int]", ReproducibleSampler, UnrepeatedSampler] = None, batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None, @@ -215,7 +220,7 @@ def prepare_torch_dataloader(ds_or_db, from fastNLP.io import DataBundle if isinstance(ds_or_db, DataSet): - dl = TorchDataLoader(dataset=ds_or_db, batch_size=train_batch_size, + dl = TorchDataLoader(dataset=ds_or_db, batch_size=batch_size, shuffle=shuffle, sampler=sampler, batch_sampler=batch_sampler, num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, @@ -228,7 +233,7 @@ def prepare_torch_dataloader(ds_or_db, dl_bundle = {} for name, ds in ds_or_db.iter_datasets(): if 'train' in name: - dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=train_batch_size, + dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=batch_size, shuffle=shuffle, sampler=sampler, batch_sampler=batch_sampler, num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, @@ -237,7 +242,7 @@ def prepare_torch_dataloader(ds_or_db, persistent_workers=persistent_workers, ) else: - dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=non_train_batch_size if non_train_batch_size else train_batch_size, + dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=non_train_batch_size if non_train_batch_size else batch_size, shuffle=shuffle, sampler=non_train_sampler if non_train_sampler else sampler, batch_sampler=batch_sampler, num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, @@ -252,10 +257,10 @@ def prepare_torch_dataloader(ds_or_db, dl_bundle = [] for idx, ds in enumerate(ds_or_db): if idx > 0: - train_batch_size = non_train_batch_size if non_train_batch_size else train_batch_size + batch_size = non_train_batch_size if non_train_batch_size else batch_size sampler = non_train_sampler if non_train_sampler else sampler dl_bundle.append( - TorchDataLoader(dataset=ds, batch_size=train_batch_size, + TorchDataLoader(dataset=ds, batch_size=batch_size, shuffle=shuffle, sampler=sampler, batch_sampler=batch_sampler, num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, @@ -269,7 +274,7 @@ def prepare_torch_dataloader(ds_or_db, dl_bundle = {} for name, ds in ds_or_db.items(): if 'train' in name: - dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=train_batch_size, + dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=batch_size, shuffle=shuffle, sampler=sampler, batch_sampler=batch_sampler, num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, @@ -278,7 +283,7 @@ def prepare_torch_dataloader(ds_or_db, persistent_workers=persistent_workers, ) else: - dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=non_train_batch_size if non_train_batch_size else train_batch_size, + dl_bundle[name] = TorchDataLoader(dataset=ds, batch_size=non_train_batch_size if non_train_batch_size else batch_size, shuffle=shuffle, sampler=non_train_sampler if non_train_sampler else sampler, batch_sampler=batch_sampler, num_workers=num_workers, collate_fn=collate_fn, pin_memory=pin_memory, diff --git a/fastNLP/core/dataset/dataset.py b/fastNLP/core/dataset/dataset.py index 6bec175b..a68c8ea6 100644 --- a/fastNLP/core/dataset/dataset.py +++ b/fastNLP/core/dataset/dataset.py @@ -497,7 +497,7 @@ class DataSet: :param progress_desc: 进度条的描述字符,默认为'Main """ if isinstance(func, LambdaType) and num_proc>1 and func.__name__ == "": - raise ("Lambda function does not support multiple processes, please set `num_proc=0`.") + raise TypeError("Lambda function does not support multiple processes, please set `num_proc=0`.") if num_proc>1 and sys.platform in ('win32', 'msys', 'cygwin'): raise RuntimeError("Your platform does not support multiprocessing with fork, please set `num_proc=0`") diff --git a/fastNLP/core/samplers/reproducible_batch_sampler.py b/fastNLP/core/samplers/reproducible_batch_sampler.py index 520ad9ba..29ff66d3 100644 --- a/fastNLP/core/samplers/reproducible_batch_sampler.py +++ b/fastNLP/core/samplers/reproducible_batch_sampler.py @@ -6,7 +6,7 @@ __all__ = [ import math from copy import deepcopy -from typing import Dict, Union, List +from typing import Dict, Union, List, Sequence from itertools import chain import numpy as np @@ -390,17 +390,20 @@ class BucketedBatchSampler(ReproducibleBatchSampler): length = dataset.get_field(length).content if not isinstance(length[0], int): length = list(map(len, length)) + self.length = np.array(length, dtype=int) + self.sorted_indices = np.argsort(self.length)[::-1] # 按长度从高到低排序的 else: - types = set(map(type, length)) - assert isinstance(length, list) and len(types)==1 and types.pop()==int, \ - "When the dataset is not fastNLP.DataSet, the length parameter can only be List[int]" + try: + self.length = np.array(length, dtype=int) + self.sorted_indices = np.argsort(length)[::-1] + except BaseException as e: + logger.error(f"Cannot use {self.__class__.__name__} as length, since it is not sortable.") assert len(length) == len(dataset), f"The length of `dataset`({len(dataset)}) and " \ f"`length`({len(length)}) should be equal." + assert len(self.sorted_indices) == len(dataset), "The indices and dataset should have equal length." self.dataset = dataset - self.length = np.array(length, dtype=int) # 按照长到短排列的序号。 - self.sorted_indices = np.argsort(self.length)[::-1] # 按长度从高到低排序的 self.batch_size = batch_size self.num_batch_per_bucket = num_batch_per_bucket diff --git a/fastNLP/core/samplers/reproducible_sampler.py b/fastNLP/core/samplers/reproducible_sampler.py index 599f465f..dbb4d0c3 100644 --- a/fastNLP/core/samplers/reproducible_sampler.py +++ b/fastNLP/core/samplers/reproducible_sampler.py @@ -5,7 +5,7 @@ __all__ = [ "SequentialSampler" ] -from typing import Dict, List, Union +from typing import Dict, List, Union, Sequence import math import numpy as np @@ -305,12 +305,18 @@ class SortedSampler(SequentialSampler): length = dataset.get_field(length).content if not isinstance(length[0], int): length = list(map(len, length)) + self.length = np.array(length, dtype=int) + self.sorted_indices = np.argsort(self.length)[::-1] # 按长度从高到低排序的 else: - types = set(map(type, length)) - assert isinstance(length, list) and len(types)==1 and types.pop()==int, \ - "When the dataset is not fastNLP.DataSet, the length parameter can only be List[int]" - - assert len(length) == len(dataset), "The length of `data` and `length` should be equal." + try: + self.length = np.array(length, dtype=int) + self.sorted_indices = np.argsort(length)[::-1] + except BaseException as e: + logger.error(f"Cannot use {self.__class__.__name__} as length, since it is not sortable.") + + assert len(length) == len(dataset), f"The length of `dataset`({len(dataset)}) and " \ + f"`length`({len(length)}) should be equal." + assert len(self.sorted_indices) == len(dataset), "The indices and dataset should have equal length." self.length = np.array(length, dtype=int) # 按照长到短排列的序号。 self.sorted_indices = np.argsort(self.length)[::-1].tolist() # 按长度从高到低排序的 diff --git a/tests/core/dataset/test_dataset.py b/tests/core/dataset/test_dataset.py index 95b2d17c..f8458a0c 100644 --- a/tests/core/dataset/test_dataset.py +++ b/tests/core/dataset/test_dataset.py @@ -184,7 +184,7 @@ class TestDataSetMethods: ds.apply(lambda ins: len(ins["y"]), new_field_name="y", progress_bar=None) assert ds.field_arrays["y"].content[0] == 2 - res = ds.apply(lambda ins: len(ins["x"]), num_proc=2, progress_desc="len") + res = ds.apply(lambda ins: len(ins["x"]), num_proc=0, progress_desc="len") assert (isinstance(res, list) and len(res) > 0) == True assert res[0] == 4 @@ -377,7 +377,7 @@ class TestDataSetMethods: def test_apply_proc(self): data = DataSet({'x': ['xxxxas1w xw zxw xz', 'xxxxas1w xw zxw xz'] * 100, 'y': [0, 1] * 100}) - data.apply_field(lambda x: len(x), field_name='x', new_field_name='len_x', num_proc=2) + data.apply_field(lambda x: len(x), field_name='x', new_field_name='len_x', num_proc=0) class TestFieldArrayInit: diff --git a/tests/core/utils/test_paddle_utils.py b/tests/core/utils/test_paddle_utils.py index c5daac63..ecabc1df 100644 --- a/tests/core/utils/test_paddle_utils.py +++ b/tests/core/utils/test_paddle_utils.py @@ -87,16 +87,10 @@ class TestPaddleMoveDataToDevice: """ paddle_tensor = paddle.rand((3, 4, 5)).cpu() - res = paddle_move_data_to_device(paddle_tensor, device=None, data_device=None) + res = paddle_move_data_to_device(paddle_tensor, device=None) self.check_cpu(res) - res = paddle_move_data_to_device(paddle_tensor, device="gpu:0", data_device=None) - self.check_gpu(res, 0) - - res = paddle_move_data_to_device(paddle_tensor, device="gpu:0", data_device="cpu") - self.check_gpu(res, 0) - - res = paddle_move_data_to_device(paddle_tensor, device=None, data_device="gpu:0") + res = paddle_move_data_to_device(paddle_tensor, device="gpu:0") self.check_gpu(res, 0) def test_list_transfer(self): @@ -106,12 +100,12 @@ class TestPaddleMoveDataToDevice: paddle_list = [paddle.rand((6, 4, 2)) for i in range(10)] - res = paddle_move_data_to_device(paddle_list, device="cpu", data_device="gpu:1") + res = paddle_move_data_to_device(paddle_list, device="cpu") assert isinstance(res, list) for r in res: self.check_cpu(r) - res = paddle_move_data_to_device(paddle_list, device="gpu:0", data_device=None) + res = paddle_move_data_to_device(paddle_list, device="gpu:0") assert isinstance(res, list) for r in res: self.check_gpu(r, 0) @@ -124,12 +118,12 @@ class TestPaddleMoveDataToDevice: paddle_list = [paddle.rand((6, 4, 2)) for i in range(10)] paddle_tuple = tuple(paddle_list) - res = paddle_move_data_to_device(paddle_tuple, device="cpu", data_device="gpu:1") + res = paddle_move_data_to_device(paddle_tuple, device="cpu") assert isinstance(res, tuple) for r in res: self.check_cpu(r) - res = paddle_move_data_to_device(paddle_tuple, device="gpu:0", data_device=None) + res = paddle_move_data_to_device(paddle_tuple, device="gpu:0") assert isinstance(res, tuple) for r in res: self.check_gpu(r, 0) @@ -150,7 +144,7 @@ class TestPaddleMoveDataToDevice: "string": "test string" } - res = paddle_move_data_to_device(paddle_dict, device="gpu:0", data_device=None) + res = paddle_move_data_to_device(paddle_dict, device="gpu:0") assert isinstance(res, dict) self.check_gpu(res["tensor"], 0) assert isinstance(res["list"], list) @@ -164,7 +158,7 @@ class TestPaddleMoveDataToDevice: self.check_gpu(t, 0) self.check_gpu(res["dict"]["tensor"], 0) - res = paddle_move_data_to_device(paddle_dict, device="gpu:0", data_device="cpu") + res = paddle_move_data_to_device(paddle_dict, device="gpu:0") assert isinstance(res, dict) self.check_gpu(res["tensor"], 0) assert isinstance(res["list"], list) @@ -178,7 +172,7 @@ class TestPaddleMoveDataToDevice: self.check_gpu(t, 0) self.check_gpu(res["dict"]["tensor"], 0) - res = paddle_move_data_to_device(paddle_dict, device="cpu", data_device="gpu:0") + res = paddle_move_data_to_device(paddle_dict, device="cpu") assert isinstance(res, dict) self.check_cpu(res["tensor"]) assert isinstance(res["list"], list) diff --git a/tests/modules/mix_modules/test_utils.py b/tests/modules/mix_modules/test_utils.py index 890a714a..c046d648 100644 --- a/tests/modules/mix_modules/test_utils.py +++ b/tests/modules/mix_modules/test_utils.py @@ -56,13 +56,13 @@ class TestPaddle2Torch: res = paddle2torch(paddle_tensor) self.check_torch_tensor(res, "cpu", not paddle_tensor.stop_gradient) - res = paddle2torch(paddle_tensor, target_device="cuda:2", no_gradient=None) + res = paddle2torch(paddle_tensor, device="cuda:2", no_gradient=None) self.check_torch_tensor(res, "cuda:2", not paddle_tensor.stop_gradient) - res = paddle2torch(paddle_tensor, target_device="cuda:1", no_gradient=True) + res = paddle2torch(paddle_tensor, device="cuda:1", no_gradient=True) self.check_torch_tensor(res, "cuda:1", False) - res = paddle2torch(paddle_tensor, target_device="cuda:1", no_gradient=False) + res = paddle2torch(paddle_tensor, device="cuda:1", no_gradient=False) self.check_torch_tensor(res, "cuda:1", True) def test_list_transfer(self): @@ -76,7 +76,7 @@ class TestPaddle2Torch: for t in res: self.check_torch_tensor(t, "cuda:1", False) - res = paddle2torch(paddle_list, target_device="cpu", no_gradient=False) + res = paddle2torch(paddle_list, device="cpu", no_gradient=False) assert isinstance(res, list) for t in res: self.check_torch_tensor(t, "cpu", True) @@ -176,13 +176,13 @@ class TestTorch2Paddle: res = torch2paddle(torch_tensor) self.check_paddle_tensor(res, "cpu", True) - res = torch2paddle(torch_tensor, target_device="gpu:2", no_gradient=None) + res = torch2paddle(torch_tensor, device="gpu:2", no_gradient=None) self.check_paddle_tensor(res, "gpu:2", True) - res = torch2paddle(torch_tensor, target_device="gpu:2", no_gradient=True) + res = torch2paddle(torch_tensor, device="gpu:2", no_gradient=True) self.check_paddle_tensor(res, "gpu:2", True) - res = torch2paddle(torch_tensor, target_device="gpu:2", no_gradient=False) + res = torch2paddle(torch_tensor, device="gpu:2", no_gradient=False) self.check_paddle_tensor(res, "gpu:2", False) def test_tensor_list_transfer(self): @@ -196,7 +196,7 @@ class TestTorch2Paddle: for t in res: self.check_paddle_tensor(t, "cpu", True) - res = torch2paddle(torch_list, target_device="gpu:1", no_gradient=False) + res = torch2paddle(torch_list, device="gpu:1", no_gradient=False) assert isinstance(res, list) for t in res: self.check_paddle_tensor(t, "gpu:1", False) @@ -208,7 +208,7 @@ class TestTorch2Paddle: torch_list = [torch.rand(6, 4, 2) for i in range(10)] torch_tuple = tuple(torch_list) - res = torch2paddle(torch_tuple, target_device="cpu") + res = torch2paddle(torch_tuple, device="cpu") assert isinstance(res, tuple) for t in res: self.check_paddle_tensor(t, "cpu", True) @@ -249,6 +249,7 @@ class TestTorch2Paddle: # ############################################################################ +@pytest.mark.torchjittor class TestJittor2Torch: def check_torch_tensor(self, tensor, device, requires_grad): @@ -272,13 +273,13 @@ class TestJittor2Torch: res = jittor2torch(jittor_var) self.check_torch_tensor(res, "cpu", True) - res = jittor2torch(jittor_var, target_device="cuda:2", no_gradient=None) + res = jittor2torch(jittor_var, device="cuda:2", no_gradient=None) self.check_torch_tensor(res, "cuda:2", True) - res = jittor2torch(jittor_var, target_device="cuda:2", no_gradient=True) + res = jittor2torch(jittor_var, device="cuda:2", no_gradient=True) self.check_torch_tensor(res, "cuda:2", False) - res = jittor2torch(jittor_var, target_device="cuda:2", no_gradient=False) + res = jittor2torch(jittor_var, device="cuda:2", no_gradient=False) self.check_torch_tensor(res, "cuda:2", True) def test_var_list_transfer(self): @@ -292,7 +293,7 @@ class TestJittor2Torch: for t in res: self.check_torch_tensor(t, "cpu", True) - res = jittor2torch(jittor_list, target_device="cuda:1", no_gradient=False) + res = jittor2torch(jittor_list, device="cuda:1", no_gradient=False) assert isinstance(res, list) for t in res: self.check_torch_tensor(t, "cuda:1", True) @@ -304,7 +305,7 @@ class TestJittor2Torch: jittor_list = [jittor.rand((6, 4, 2)) for i in range(10)] jittor_tuple = tuple(jittor_list) - res = jittor2torch(jittor_tuple, target_device="cpu") + res = jittor2torch(jittor_tuple, device="cpu") assert isinstance(res, tuple) for t in res: self.check_torch_tensor(t, "cpu", True) @@ -345,6 +346,7 @@ class TestJittor2Torch: # ############################################################################ +@pytest.mark.torchjittor class TestTorch2Jittor: def check_jittor_var(self, var, requires_grad): diff --git a/tests/pytest.ini b/tests/pytest.ini index 5015a002..27076810 100644 --- a/tests/pytest.ini +++ b/tests/pytest.ini @@ -4,4 +4,5 @@ markers = paddle paddledist jittor - torchpaddle \ No newline at end of file + torchpaddle + torchjittor \ No newline at end of file