@@ -1,4 +1,53 @@ | |||
__all__ = [ | |||
# callbacks | |||
'Callback', | |||
'Event', | |||
'Filter', | |||
'CallbackManager', | |||
'CheckpointCallback', | |||
'choose_progress_callback', | |||
'ProgressCallback', | |||
'RichCallback', | |||
"LRSchedCallback", | |||
'LoadBestModelCallback', | |||
"EarlyStopCallback", | |||
'MoreEvaluateCallback', | |||
"TorchWarmupCallback", | |||
"TorchGradClipCallback", | |||
# collators | |||
'Collator', | |||
'NumpyNumberPadder', | |||
'NumpySequencePadder', | |||
"NumpyTensorPadder", | |||
"Padder", | |||
"NullPadder", | |||
"RawNumberPadder", | |||
"RawSequencePadder", | |||
'TorchNumberPadder', | |||
'TorchSequencePadder', | |||
'TorchTensorPadder', | |||
"PaddleNumberPadder", | |||
"PaddleTensorPadder", | |||
"PaddleSequencePadder", | |||
"get_padded_numpy_array", | |||
# controllers | |||
'Loop', | |||
'EvaluateBatchLoop', | |||
'TrainBatchLoop', | |||
'Evaluator', | |||
'Trainer', | |||
# dataloaders TODO 需要把 mix_dataloader 的搞定 | |||
# dataset | |||
'DataSet', | |||
'FieldArray', | |||
'Instance', | |||
'ApplyResultException', | |||
# drivers | |||
"TorchSingleDriver", | |||
"TorchDDPDriver", | |||
"PaddleSingleDriver", | |||
@@ -7,16 +56,16 @@ __all__ = [ | |||
"JittorMPIDriver", | |||
"TorchPaddleDriver", | |||
"paddle_to", | |||
"get_paddle_gpu_str", | |||
"get_paddle_device_id", | |||
"paddle_move_data_to_device", | |||
"torch_paddle_move_data_to_device", | |||
] | |||
# TODO:之后要优化一下这里的导入,应该是每一个 sub module 先import自己内部的类和函数,然后外层的 module 再直接从 submodule 中 import; | |||
from fastNLP.core.controllers.trainer import Trainer | |||
from fastNLP.core.controllers.evaluator import Evaluator | |||
from fastNLP.core.dataloaders.torch_dataloader import * | |||
# log | |||
"logger" | |||
# | |||
] | |||
from .callbacks import * | |||
from .collators import * | |||
from .controllers import * | |||
from .dataloaders import * | |||
from .dataset import * | |||
from .drivers import * | |||
from .log import * | |||
from .utils import * |
@@ -1,7 +1,6 @@ | |||
__all__ = [ | |||
'Callback', | |||
'Events', | |||
'EventsList', | |||
'Event', | |||
'Filter', | |||
'CallbackManager', | |||
'CheckpointCallback', | |||
@@ -20,7 +19,7 @@ __all__ = [ | |||
from .callback import Callback | |||
from .callback_events import EventsList, Events, Filter | |||
from .callback_event import Event, Filter | |||
from .callback_manager import CallbackManager | |||
from .checkpoint_callback import CheckpointCallback | |||
from .progress_callback import choose_progress_callback, ProgressCallback, RichCallback | |||
@@ -3,10 +3,9 @@ __all__ = [ | |||
'Callback', | |||
] | |||
from typing import Union, Callable, Dict, Optional, Any | |||
from typing import Callable, Dict, Optional | |||
from .callback_events import Events, EventsList, Filter | |||
from fastNLP.core.callbacks.callback_events import _SingleEventState | |||
from .callback_event import Event, Filter | |||
class Callback: | |||
@@ -14,32 +13,35 @@ class Callback: | |||
实际使用的 callback 类,不管是我们 fastNLP 默认提供的一些 callback 类,还是用户自己定制的 callback 类,都应该继承该基类; | |||
callback 调用时机顺序大概如下 | |||
Trainer.__init__(): | |||
on_after_trainer_initialized() | |||
on_after_trainer_initialized(trainer, driver) | |||
Trainer.run(): | |||
if num_eval_sanity_batch>0: | |||
on_sanity_check_begin() # 如果设置了num_eval_sanity_batch | |||
on_sanity_check_end() | |||
on_sanity_check_begin(trainer) # 如果设置了num_eval_sanity_batch | |||
on_sanity_check_end(trainer, sanity_check_res) | |||
try: | |||
on_train_begin() | |||
on_train_begin(trainer) | |||
while cur_epoch_idx < n_epochs: | |||
on_train_epoch_begin() | |||
on_train_epoch_begin(trainer) | |||
while batch_idx_in_epoch<=num_batches_per_epoch: | |||
on_fetch_data_begin() | |||
on_fetch_data_end() | |||
on_train_batch_begin() | |||
on_before_backward() | |||
on_after_backward() | |||
on_before_zero_grad() # 实际调用受到 accumulation_steps 影响 | |||
on_after_zero_grad() # 实际调用受到 accumulation_steps 影响 | |||
on_before_optimizers_step() # 实际调用受到 accumulation_steps 影响 | |||
on_after_optimizers_step() # 实际调用受到 accumulation_steps 影响 | |||
on_train_batch_end() | |||
on_train_epoch_end() | |||
on_fetch_data_begin(trainer) | |||
batch = next(dataloader) | |||
on_fetch_data_end(trainer) | |||
on_train_batch_begin(trainer, batch, indices) | |||
on_before_backward(trainer, outputs) # 其中 outputs 是经过 output_mapping(如果设置了) 后的,否则即为 model 的输出。 | |||
on_after_backward(trainer) | |||
on_before_zero_grad(trainer, optimizers) # 实际调用受到 accumulation_steps 影响 | |||
on_after_zero_grad(trainer, optimizers) # 实际调用受到 accumulation_steps 影响 | |||
on_before_optimizers_step(trainer, optimizers) # 实际调用受到 accumulation_steps 影响 | |||
on_after_optimizers_step(trainer, optimizers) # 实际调用受到 accumulation_steps 影响 | |||
on_train_batch_end(trainer) | |||
on_train_epoch_end(trainer) | |||
except BaseException: | |||
self.on_exception() | |||
self.on_exception(trainer, exception) | |||
finally: | |||
on_train_end() | |||
其它 callback 例如 on_evaluate_begin()/on_evaluate_end()将 | |||
on_train_end(trainer) | |||
其它 callback 例如 on_evaluate_begin(trainer)/on_evaluate_end(trainer, results)/on_save_model(trainer)/ | |||
on_load_model(trainer)/on_save_checkpoint(trainer)/on_load_checkpoint(trainer)将根据需要在Trainer.run()中特定 | |||
的时间调用。 | |||
""" | |||
def on_after_trainer_initialized(self, trainer, driver): | |||
@@ -294,18 +296,14 @@ class _CallbackWrapper(Callback): | |||
对于用户使用函数修饰器加入的 callback 函数,使用该 _CallbackWrapper 类为其进行定制,这一个类只保留用户的 | |||
这一个 callback 函数; | |||
""" | |||
def __init__(self, event: Union[Events, EventsList], fn: Callable): | |||
def __init__(self, event: Event, fn: Callable): | |||
r""" | |||
:param event: 具体的 callback 时机,例如 'on_train_begin' 等;可以多个时机,此时 `event` 的 type 应当为 'EventsList'; | |||
:param event: 具体的 callback 时机,例如 'on_train_begin' 等; | |||
:param fn: 用户定制的 callback 函数; | |||
""" | |||
self.fn = fn | |||
if isinstance(event, EventsList): | |||
for each_event in event: | |||
_filter = Filter(each_event.every, each_event.once, each_event.filter_fn) | |||
setattr(self, each_event.value, _filter(fn)) | |||
elif isinstance(event, _SingleEventState): | |||
if isinstance(event, Event): | |||
_filter = Filter(event.every, event.once, event.filter_fn) | |||
setattr(self, event.value, _filter(fn)) | |||
@@ -0,0 +1,499 @@ | |||
from typing import Optional, Callable, Dict | |||
from functools import wraps | |||
__all__ = [ | |||
'Event', | |||
'Filter' | |||
] | |||
def check_legality(fn): | |||
@wraps(fn) | |||
def wrap(every=None, once=None, filter_fn=None): | |||
if (every is None) and (once is None) and (filter_fn is None): | |||
every = 1 | |||
if not ((every is not None) ^ (once is not None) ^ (filter_fn is not None)): | |||
raise ValueError("These three values should be only set one.") | |||
if (filter_fn is not None) and not callable(filter_fn): | |||
raise TypeError("Argument filter_fn should be a callable") | |||
if (every is not None) and not (isinstance(every, int) and every > 0): | |||
raise ValueError("Argument every should be integer and greater than zero") | |||
if (once is not None) and not (isinstance(once, int) and once > 0): | |||
raise ValueError("Argument once should be integer and positive") | |||
return fn(every=every, once=once, filter_fn=filter_fn) | |||
return wrap | |||
class Event: | |||
every: Optional[int] | |||
once: Optional[int] | |||
def __init__(self, value: str, every: Optional[int] = None, once: Optional[int] = None, | |||
filter_fn: Optional[Callable] = None): | |||
""" | |||
请勿直接使用本对象,而是通过调用 Event.on_after_trainer_initialized() 等方式调用。 | |||
:param value: Trainer 的 callback 时机。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
""" | |||
self.every = every | |||
self.once = once | |||
self.filter_fn = filter_fn | |||
self.value = value | |||
def __str__(self): | |||
return "<event={0}, every={1}, once={2}, filter fn is:{3}>".format(self.value, self.every, self.once, | |||
self.filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_after_trainer_initialized(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_after_trainer_initialized 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。默认为 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_after_trainer_initialized', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_sanity_check_begin(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_sanity_check_begin 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_sanity_check_begin', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_sanity_check_end(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_sanity_check_end 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_sanity_check_end', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_train_begin(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_train_begin 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_train_begin', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_train_end(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_train_end 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_train_end', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_train_epoch_begin(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_train_epoch_begin 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_train_epoch_begin', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_train_epoch_end(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_train_epoch_end 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_train_epoch_end', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_fetch_data_begin(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_fetch_data_begin 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_fetch_data_begin', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_fetch_data_end(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_fetch_data_end 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_fetch_data_end', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_train_batch_begin(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_train_batch_begin 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_train_batch_begin', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_train_batch_end(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_train_batch_end 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_train_batch_end', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_exception(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_exception 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_exception', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_save_model(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_save_model 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_save_model', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_load_model(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_load_model 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_load_model', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_save_checkpoint(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_save_checkpoint 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_save_checkpoint', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_load_checkpoint(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_load_checkpoint 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_load_checkpoint', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_load_checkpoint(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_load_checkpoint 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_load_checkpoint', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_before_backward(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_before_backward 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_before_backward', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_after_backward(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_after_backward 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_after_backward', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_before_optimizers_step(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_before_optimizers_step 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_before_optimizers_step', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_after_optimizers_step(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_after_optimizers_step 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_after_optimizers_step', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_before_zero_grad(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_before_zero_grad 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_before_zero_grad', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_after_zero_grad(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_after_zero_grad 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_after_zero_grad', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_evaluate_begin(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_evaluate_begin 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_evaluate_begin', every=every, once=once, filter_fn=filter_fn) | |||
@staticmethod | |||
@check_legality | |||
def on_evaluate_end(every=None, once=None, filter_fn=None): | |||
""" | |||
当 Trainer 运行到 on_evaluate_end 时 | |||
以下三个参数互斥,只能设置其中一个。默认为行为等同于 every=1 。 | |||
:param int every: 触发了多少次,才真正运行一次。 | |||
:param bool once: 是否只在第一次运行后就不再执行了。 | |||
:param Callable filter_fn: 输入参数的应该为 (filter, trainer),其中 filter 对象中包含了 filter.num_called 和 | |||
filter.num_executed 两个变了分别获取当前被调用了多少次,真正执行了多少次。trainer 对象即为当前正在运行的 Trainer 。 | |||
:return: | |||
""" | |||
return Event(value='on_evaluate_end', every=every, once=once, filter_fn=filter_fn) | |||
class Filter: | |||
def __init__(self, every: Optional[int] = None, once: Optional[bool] = None, filter_fn: Optional[Callable] = None): | |||
r""" | |||
通过该 `Filter` 作为函数修饰器来控制一个函数的实际的运行频率; | |||
:param every: 表示一个函数隔多少次运行一次; | |||
:param once: 表示一个函数只运行一次; | |||
:param filter_fn: 用户定制的频率控制函数;注意该函数内部的频率判断应当是无状态的,除了参数 `self.num_called` 和 | |||
`self.num_executed` 外,因为我们会在预跑后重置这两个参数的状态; | |||
""" | |||
# check legality | |||
check_legality(lambda *args,**kwargs:...)(every, once, filter_fn) | |||
if (every is None) and (once is None) and (filter_fn is None): | |||
every = 1 | |||
# 设置变量,包括全局变量; | |||
self.num_called = 0 | |||
self.num_executed = 0 | |||
if every is not None: | |||
self._every = every | |||
self._filter = self.every_filter | |||
elif once is not None: | |||
self._once = once | |||
self._filter = self.once_filter | |||
else: | |||
self._filter = filter_fn | |||
def __call__(self, fn: Callable): | |||
@wraps(fn) | |||
def wrapper(*args, **kwargs) -> Callable: | |||
self.num_called += 1 | |||
# 因为我们的 callback 函数的输入是固定的,而且我们能够保证第一个参数一定是 trainer; | |||
trainer = args[0] | |||
if self._filter(self, trainer): | |||
self.num_executed += 1 | |||
return fn(*args, **kwargs) | |||
wrapper.__fastNLP_filter__ = self | |||
return wrapper | |||
def every_filter(self, *args): | |||
return self.num_called % self._every == 0 | |||
def once_filter(self, *args): | |||
return self.num_called == self._once | |||
def state_dict(self) -> Dict: | |||
r""" | |||
通过该函数来保存该 `Filter` 的状态; | |||
""" | |||
return {"num_called": self.num_called, "num_executed": self.num_executed} | |||
def load_state_dict(self, state: Dict): | |||
r""" | |||
通过该函数来加载 `Filter` 的状态; | |||
:param state: 通过 `Filter.state_dict` 函数保存的状态元组; | |||
""" | |||
self.num_called = state["num_called"] | |||
self.num_executed = state["num_executed"] | |||
@@ -1,206 +0,0 @@ | |||
from enum import Enum, unique | |||
from typing import Union, Optional, List, Iterator, Callable, Tuple, Dict | |||
from types import DynamicClassAttribute | |||
from functools import wraps | |||
__all__ = [ | |||
'Events', | |||
'EventsList', | |||
'Filter' | |||
] | |||
class _SingleEventState: | |||
every: Optional[int] | |||
once: Optional[int] | |||
def __init__(self, value: str, every: Optional[int] = None, once: Optional[int] = None, | |||
filter_fn: Optional[Callable] = None, name: Optional[str] = None): | |||
# 具体的检测参数对错的逻辑放在具体的 Filter 里; | |||
if every is None and once is None and filter_fn is None: | |||
self.every = 1 | |||
self.once = None | |||
self.filter_fn = None | |||
else: | |||
self.every = every | |||
self.once = once | |||
self.filter_fn = filter_fn | |||
if not hasattr(self, "_value_"): | |||
self._value_ = value | |||
if not hasattr(self, "_name_") and name is not None: | |||
self._name_ = name | |||
# copied to be compatible to enum | |||
@DynamicClassAttribute | |||
def name(self) -> str: | |||
"""The name of the Enum member.""" | |||
return self._name_ | |||
@DynamicClassAttribute | |||
def value(self) -> str: | |||
"""The value of the Enum member.""" | |||
return self._value_ | |||
def __call__(self, every: Optional[int] = None, once: Optional[int] = None, filter_fn: Optional[Callable] = None): | |||
return _SingleEventState(self.value, every, once, filter_fn, self.name) | |||
def __str__(self): | |||
return "<event={0}, every={1}, once={2}, filter fn is None:{3}>".format(self.name, self.every, self.once, | |||
self.filter_fn) | |||
def __eq__(self, other) -> bool: | |||
if isinstance(other, _SingleEventState): | |||
return self.name == other.name | |||
elif isinstance(other, str): | |||
return self.name == other | |||
else: | |||
raise NotImplemented | |||
def __hash__(self): | |||
return hash(self._name_) | |||
def __or__(self, other) -> "EventsList": | |||
return EventsList() | self | other | |||
class EventEnum(_SingleEventState, Enum): | |||
pass | |||
@unique | |||
class Events(EventEnum): | |||
on_after_trainer_initialized = "on_after_trainer_initialized" | |||
on_sanity_check_begin = "on_sanity_check_begin" | |||
on_sanity_check_end = "on_sanity_check_end" | |||
on_train_begin = "on_train_begin" | |||
on_train_end = "on_train_end" | |||
on_train_epoch_begin = "on_train_epoch_begin" | |||
on_train_epoch_end = "on_train_epoch_end" | |||
on_fetch_data_begin = "on_fetch_data_begin" | |||
on_fetch_data_end = "on_fetch_data_end" | |||
on_train_batch_begin = "on_train_batch_begin" | |||
on_train_batch_end = "on_train_batch_end" | |||
on_exception = "on_exception" | |||
on_save_model = "on_save_model" | |||
on_load_model = "on_load_model" | |||
on_save_checkpoint = "on_save_checkpoint" | |||
on_load_checkpoint = "on_load_checkpoint" | |||
on_before_backward = "on_before_backward" | |||
on_after_backward = "on_after_backward" | |||
on_before_optimizers_step = "on_before_optimizers_step" | |||
on_after_optimizers_step = "on_after_optimizers_step" | |||
on_before_zero_grad = "on_before_zero_grad" | |||
on_after_zero_grad = "on_after_zero_grad" | |||
on_evaluate_begin = "on_evaluate_begin" | |||
on_evaluate_end = "on_evaluate_end" | |||
class EventsList: | |||
"""Collection of events stacked by operator `__or__`. | |||
""" | |||
def __init__(self) -> None: | |||
self._events = [] # type: List[Union[Events, _SingleEventState]] | |||
def _append(self, event: Union[Events, _SingleEventState]) -> None: | |||
if not isinstance(event, (Events, _SingleEventState)): | |||
raise TypeError(f"Argument event should be Events or CallableEventWithFilter, got: {type(event)}") | |||
self._events.append(event) | |||
def __getitem__(self, item: int) -> Union[Events, _SingleEventState]: | |||
return self._events[item] | |||
def __iter__(self) -> Iterator[Union[Events, _SingleEventState]]: | |||
return iter(self._events) | |||
def __len__(self) -> int: | |||
return len(self._events) | |||
def __or__(self, other: Union[Events, _SingleEventState]) -> "EventsList": | |||
self._append(event=other) | |||
return self | |||
class Filter: | |||
def __init__(self, every: Optional[int] = None, once: Optional[int] = None, filter_fn: Optional[Callable] = None): | |||
r""" | |||
通过该 `Filter` 作为函数修饰器来控制一个函数的实际的运行频率; | |||
:param every: 表示一个函数隔多少次运行一次; | |||
:param once: 表示一个函数只在第多少次时运行一次; | |||
:param filter_fn: 用户定制的频率控制函数;注意该函数内部的频率判断应当是无状态的,除了参数 `self.num_called` 和 | |||
`self.num_executed` 外,因为我们会在预跑后重置这两个参数的状态; | |||
""" | |||
if (every is None) and (once is None) and (filter_fn is None): | |||
raise ValueError("If you mean your decorated function should be called every time, you do not need this filter.") | |||
if not ((every is not None) ^ (once is not None) ^ (filter_fn is not None)): | |||
raise ValueError("These three values should be only set one.") | |||
if (filter_fn is not None) and not callable(filter_fn): | |||
raise TypeError("Argument event_filter should be a callable") | |||
if (every is not None) and not (isinstance(every, int) and every > 0): | |||
raise ValueError("Argument every should be integer and greater than zero") | |||
if (once is not None) and not (isinstance(once, int) and once > 0): | |||
raise ValueError("Argument once should be integer and positive") | |||
# 设置变量,包括全局变量; | |||
self.num_called = 0 | |||
self.num_executed = 0 | |||
if every is not None: | |||
self._every = every | |||
self._filter = self.every_filter | |||
elif once is not None: | |||
self._once = once | |||
self._filter = self.once_filter | |||
else: | |||
self._filter = filter_fn | |||
def __call__(self, fn: Callable): | |||
@wraps(fn) | |||
def wrapper(*args, **kwargs) -> Callable: | |||
self.num_called += 1 | |||
# 因为我们的 callback 函数的输入是固定的,而且我们能够保证第一个参数一定是 trainer; | |||
trainer = args[0] | |||
if self._filter(self, trainer): | |||
self.num_executed += 1 | |||
return fn(*args, **kwargs) | |||
wrapper.__fastNLP_filter__ = self | |||
return wrapper | |||
def every_filter(self, *args): | |||
return self.num_called % self._every == 0 | |||
def once_filter(self, *args): | |||
return self.num_called == self._once | |||
def state_dict(self) -> Dict: | |||
r""" | |||
通过该函数来保存该 `Filter` 的状态; | |||
""" | |||
return {"num_called": self.num_called, "num_executed": self.num_executed} | |||
def load_state_dict(self, state: Dict): | |||
r""" | |||
通过该函数来加载 `Filter` 的状态; | |||
:param state: 通过 `Filter.state_dict` 函数保存的状态元组; | |||
""" | |||
self.num_called = state["num_called"] | |||
self.num_executed = state["num_executed"] | |||
@@ -6,7 +6,7 @@ __all__ = [ | |||
'CallbackManager' | |||
] | |||
from .callback_events import Events | |||
from .callback_event import Event | |||
from .callback import Callback | |||
from fastNLP.core.log import logger | |||
from .progress_callback import ProgressCallback, choose_progress_callback | |||
@@ -110,7 +110,7 @@ class CallbackManager: | |||
def initialize_class_callbacks(self): | |||
r""" | |||
在实际的运行过程中,我们是将具体的一个 callback 实例拆分为单独的一个个 callback 函数,然后将它们加在一个字典里,该字典的键值就是 | |||
一个个 callback 时机,也就是 `Events` 的类别; | |||
一个个 callback 时机,也就是 `Event` 的类别; | |||
如果一个 callback 类的 callback 函数并不具备任何作用,我们实际并不会将其加在字典当中; | |||
:param callbacks: | |||
@@ -127,11 +127,12 @@ class CallbackManager: | |||
:param callback: 一个具体的 callback 实例; | |||
""" | |||
self.all_callbacks.append(callback) | |||
for name, member in Events.__members__.items(): | |||
_fn = getattr(callback, member.value) | |||
if inspect.getsource(_fn) != inspect.getsource(getattr(Callback, member.value)): | |||
self.callback_fns[member.value].append(_fn) | |||
self.extract_callback_filter_state(callback.callback_name, _fn) | |||
for name, member in Event.__dict__.items(): | |||
if isinstance(member, staticmethod): | |||
_fn = getattr(callback, name) | |||
if inspect.getsource(_fn) != inspect.getsource(getattr(Callback, name)): | |||
self.callback_fns[name].append(_fn) | |||
self.extract_callback_filter_state(callback.callback_name, _fn) | |||
def extract_callback_filter_state(self, callback_name, callback_fn): | |||
r""" | |||
@@ -161,7 +161,6 @@ class MonitorUtility: | |||
return monitor_name | |||
class HasMonitorCallback(MonitorUtility, Callback): | |||
def __init__(self, monitor, larger_better, must_have_monitor=False): | |||
""" | |||
@@ -1,4 +1,20 @@ | |||
__all__ = [ | |||
'Collator' | |||
'Collator', | |||
'NumpyNumberPadder', | |||
'NumpySequencePadder', | |||
"NumpyTensorPadder", | |||
"Padder", | |||
"NullPadder", | |||
"RawNumberPadder", | |||
"RawSequencePadder", | |||
'TorchNumberPadder', | |||
'TorchSequencePadder', | |||
'TorchTensorPadder', | |||
"PaddleNumberPadder", | |||
"PaddleTensorPadder", | |||
"PaddleSequencePadder", | |||
"get_padded_numpy_array", | |||
] | |||
from .collator import Collator | |||
from .padders import * |
@@ -65,12 +65,16 @@ def _get_backend() -> str: | |||
return catch_backend[0] | |||
# 方式 (2) | |||
for backend in CHECK_BACKEND: | |||
if backend in sys.modules: | |||
logger.debug(f"sys.modules contains backend:{catch_backend[0]}.") | |||
return backend | |||
for key, module in sys.modules.items(): | |||
catch_backend = _check_module(module) | |||
if catch_backend: | |||
break | |||
if len(catch_backend): | |||
logger.debug(f"Find a file named:{catch_backend[1]} from sys.modules contains backend:{catch_backend[0]}.") | |||
logger.debug(f"Find a module file named:{catch_backend[1]} from sys.modules contains backend:{catch_backend[0]}.") | |||
return catch_backend[0] | |||
return 'numpy' | |||
@@ -227,7 +231,7 @@ class Collator: | |||
设置可以 pad 的 field 默认 pad 为什么类型的 tensor | |||
:param backend: 对于可以 pad 的 field,使用哪种 tensor,支持 ['torch','jittor','paddle','numpy','raw', 'auto', None], | |||
若为 auto ,则在进行 pad 的时候会根据调用的环境决定其 backend 。 | |||
若为 auto ,则在进行 pad 的时候会自动根据调用的环境决定其 backend 。 | |||
:return: | |||
""" | |||
assert backend in SUPPORTED_BACKENDS | |||
@@ -0,0 +1,30 @@ | |||
__all__ = [ | |||
'NumpyNumberPadder', | |||
'NumpySequencePadder', | |||
"NumpyTensorPadder", | |||
"Padder", | |||
"NullPadder", | |||
"RawNumberPadder", | |||
"RawSequencePadder", | |||
'TorchNumberPadder', | |||
'TorchSequencePadder', | |||
'TorchTensorPadder', | |||
"PaddleNumberPadder", | |||
"PaddleTensorPadder", | |||
"PaddleSequencePadder", | |||
"get_padded_numpy_array", | |||
] | |||
from .numpy_padder import * | |||
from .padder import Padder, NullPadder | |||
from .raw_padder import * | |||
from .torch_padder import * | |||
from .paddle_padder import * | |||
from .utils import get_padded_numpy_array |
@@ -1,8 +1,3 @@ | |||
from typing import Dict | |||
from typing import Sequence, Any, Union, Dict | |||
from abc import ABC | |||
@@ -12,7 +7,7 @@ from fastNLP.core.log import logger | |||
from .padder import Padder, NullPadder | |||
from .numpy_padder import NumpyNumberPadder, NumpySequencePadder, NumpyTensorPadder | |||
from .torch_padder import TorchNumberPadder, TorchSequencePadder, TorchTensorPadder | |||
from .raw_padder import RawNumberPadder, RawSequencePadder | |||
from .raw_padder import RawNumberPadder, RawSequencePadder, RawTensorPadder | |||
from .paddle_padder import PaddleTensorPadder, PaddleSequencePadder, PaddleNumberPadder | |||
from .exceptions import * | |||
@@ -28,7 +23,7 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)-> | |||
:param field_name: 方便报错的。 | |||
:return: | |||
""" | |||
assert len(batch_field)!=0, "Empty batch encountered." | |||
logger.debug(f"The content in the field:`{field_name}` is:\n" + str(batch_field)) | |||
if pad_val is None: | |||
logger.debug(f"The pad_val for field:{field_name} is None, not padding this field.") | |||
@@ -68,7 +63,10 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)-> | |||
return NullPadder() | |||
# 再检查所有的元素 type 是否一致 | |||
ele_dtypes = set([v[1] for v in catalog.values()]) | |||
try: | |||
ele_dtypes = set([v[1] for v in catalog.values()]) | |||
except TypeError: | |||
ele_dtypes = set([str(v[1]) for v in catalog.values()]) | |||
num_eletypes = len(ele_dtypes) | |||
if num_eletypes != 1: | |||
msg = f'Field:`{field_name}` cannot pad, since it has various types({ele_dtypes}) of data. To view more ' \ | |||
@@ -80,7 +78,7 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)-> | |||
depth = depths.pop() | |||
shape_len = shape_lens.pop() | |||
ele_dtype = ele_dtypes.pop() | |||
ele_dtype = list(catalog.values())[0][1] # 因为上面有except的情况,所以这样处理了 | |||
# 需要由 padder 自己决定是否能够 pad 。 | |||
try: | |||
@@ -93,6 +91,8 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)-> | |||
return TorchNumberPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
elif backend == 'paddle': | |||
return PaddleNumberPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
else: | |||
raise ValueError(f"backend={backend} is not supported for list(Field:{field_name}).") | |||
if depth > 1 and shape_len == 0: # 形如 [[0, 1], [2]] 这种 | |||
if backend == 'raw': | |||
@@ -103,14 +103,21 @@ def get_padder(batch_field:Sequence[Any], pad_val, dtype, backend, field_name)-> | |||
return TorchSequencePadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
elif backend == 'paddle': | |||
return PaddleSequencePadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
else: | |||
raise ValueError(f"backend={backend} is not supported for nested list(Field:{field_name}).") | |||
if depth == 1 and shape_len != 0: | |||
if backend == 'numpy': | |||
return NumpyTensorPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
# 如果有有 shape 的话,只有当该对象拥有 tolist() 方法才行 | |||
if depth == 1 and shape_len != 0 and callable(getattr(batch_field[0], 'tolist', None)): | |||
if backend == 'raw': | |||
return RawTensorPadder(pad_val=pad_val, ele_dtype=None, dtype=dtype) | |||
elif backend == 'numpy': | |||
return NumpyTensorPadder(pad_val=pad_val, ele_dtype=None, dtype=dtype) | |||
elif backend == 'torch': | |||
return TorchTensorPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
return TorchTensorPadder(pad_val=pad_val, ele_dtype=None, dtype=dtype) | |||
elif backend == 'paddle': | |||
return PaddleTensorPadder(pad_val=pad_val, ele_dtype=ele_dtype, dtype=dtype) | |||
return PaddleTensorPadder(pad_val=pad_val, ele_dtype=None, dtype=dtype) | |||
else: | |||
raise ValueError(f"backend={backend} is not supported for tensors(Field:{field_name}).") | |||
if shape_len != 0 and depth>1: | |||
msg = "Does not support pad tensor under nested list. If you need this, please report." | |||
@@ -179,23 +186,3 @@ def _get_element_shape_dtype(content, parent=None, catalog=None)->Dict: | |||
else: # 包括 int/float/bool/dict 以及 其它无法pad 的等 | |||
catalog[parent] = ((), type(content)) # () 表示 shape 的长度为 0,后面表示其类别 | |||
return catalog | |||
""" | |||
from numbers import Number | |||
issubclass(type(3), Number) # True | |||
issubclass(type(3.1), Number) # True | |||
issubclass(type('3'), Number) # False | |||
issubclass(type(True), Number) # True | |||
issubclass(type(np.zeros(3)[0]), Number) # True | |||
isinstance(np.zeros(3, dtype=float).dtype, np.dtype) # True | |||
isinstance(np.zeros(3, dtype=int).dtype, np.dtype) # True | |||
isinstance(np.zeros(3, dtype=str).dtype, np.dtype) # True, 需要通过和来判定 | |||
is_torch_tensor_dtype() # 可以通过isinstance(torch.zeros(3).dtype, torch.dtype) | |||
""" | |||
@@ -66,7 +66,7 @@ class NumpySequencePadder(Padder): | |||
class NumpyTensorPadder(Padder): | |||
def __init__(self, pad_val=0, ele_dtype=None, dtype=None): | |||
""" | |||
pad 类似于 [np.array([3, 4], np.array([1])] 的 field | |||
pad 类似于 [np.array([3, 4], np.array([1])] 的 field 。若内部元素不为 np.ndarray ,则必须含有 tolist() 方法。 | |||
:param pad_val: pad 的值是多少。 | |||
:param ele_dtype: 用于检测当前 field 的元素类型是否可以转换为 np.array 类型。 | |||
@@ -77,6 +77,13 @@ class NumpyTensorPadder(Padder): | |||
@staticmethod | |||
def pad(batch_field, pad_val, dtype): | |||
try: | |||
if not isinstance(batch_field[0], np.ndarray): | |||
batch_field = [np.array(field.tolist()) for field in batch_field] | |||
except AttributeError: | |||
raise RuntimeError(f"If the field is not a np.ndarray (it is {type(batch_field[0])}), " | |||
f"it must have tolist() method.") | |||
shapes = [field.shape for field in batch_field] | |||
max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] | |||
array = np.full(max_shape, fill_value=pad_val, dtype=dtype) | |||
@@ -56,7 +56,7 @@ def is_paddle_dtype_str(dtype): | |||
def _get_dtype(ele_dtype, dtype, class_name): | |||
if not (is_number_or_numpy_number(ele_dtype) or is_paddle_tensor(ele_dtype) or is_paddle_dtype_str(ele_dtype)): | |||
if not (ele_dtype is not None or is_number_or_numpy_number(ele_dtype) or is_paddle_tensor(ele_dtype) or is_paddle_dtype_str(ele_dtype)): | |||
raise EleDtypeUnsupportedError(f"`{class_name}` only supports padding python numbers " | |||
f"or numpy numbers or paddle.Tensor but get `{ele_dtype}`.") | |||
@@ -74,13 +74,20 @@ def _get_dtype(ele_dtype, dtype, class_name): | |||
elif is_numpy_generic_class(ele_dtype): | |||
dtype = numpy_to_paddle_dtype_dict.get(ele_dtype) | |||
else: | |||
dtype == ele_dtype | |||
dtype = ele_dtype | |||
return dtype | |||
class PaddleNumberPadder(Padder): | |||
def __init__(self, ele_dtype, pad_val=0, dtype=None): | |||
def __init__(self, pad_val=0, ele_dtype=None, dtype=None): | |||
""" | |||
可以将形如 [1, 2, 3] 这类的数据转为 paddle.Tensor([1, 2, 3]) | |||
:param pad_val: 该值无意义 | |||
:param ele_dtype: 用于检测当前 field 的元素类型是否可以转换为 paddle.tensor 类型。 | |||
:param dtype: 输出的数据的 dtype 是什么。如 int, float, 'int32' 等 | |||
""" | |||
# 仅当 ele_dtype 是 python number/ numpy number 或者 tensor | |||
dtype = _get_dtype(ele_dtype, dtype, class_name=self.__class__.__name__) | |||
super().__init__(pad_val=pad_val, dtype=dtype) | |||
@@ -91,7 +98,14 @@ class PaddleNumberPadder(Padder): | |||
class PaddleSequencePadder(Padder): | |||
def __init__(self, ele_dtype, pad_val=0, dtype=None): | |||
def __init__(self, ele_dtype=None, pad_val=0, dtype=None): | |||
""" | |||
将类似于 [[1], [1, 2]] 的内容 pad 为 paddle.Tensor([[1, 0], [1, 2]]) 可以 pad 多重嵌套的数据。 | |||
:param pad_val: pad 的值。 | |||
:param ele_dtype: 用于检测当前 field 的元素类型是否可以转换为 paddle.tensor 类型。 | |||
:param dtype: 输出的数据的 dtype 是什么。如 int, float, 'int32' 等 | |||
""" | |||
dtype = _get_dtype(ele_dtype, dtype, class_name=self.__class__.__name__) | |||
super().__init__(pad_val=pad_val, dtype=dtype) | |||
@@ -102,19 +116,26 @@ class PaddleSequencePadder(Padder): | |||
class PaddleTensorPadder(Padder): | |||
def __init__(self, ele_dtype, pad_val=0, dtype=None): | |||
def __init__(self, pad_val=0, ele_dtype=None, dtype=None): | |||
""" | |||
目前仅支持 [paddle.tensor([3, 2], paddle.tensor([1])] 类似的 | |||
目前支持 [paddle.tensor([3, 2], paddle.tensor([2, 1])] 类似的,若内部元素不为 paddle.tensor ,则必须含有 tolist() 方法。 | |||
:param ele_dtype: | |||
:param pad_val: | |||
:param dtype: | |||
:param pad_val: pad 的值。 | |||
:param ele_dtype: 用于检测当前 field 的元素类型是否可以转换为 paddle.tensor 类型。 | |||
:param dtype: 输出的数据的 dtype 是什么。如 int, float, 'int32' 等 | |||
""" | |||
dtype = _get_dtype(ele_dtype, dtype, class_name=self.__class__.__name__) | |||
super().__init__(pad_val=pad_val, dtype=dtype) | |||
@staticmethod | |||
def pad(batch_field, pad_val, dtype): | |||
try: | |||
if not isinstance(batch_field[0], paddle.Tensor): | |||
batch_field = [paddle.to_tensor(field.tolist()) for field in batch_field] | |||
except AttributeError: | |||
raise RuntimeError(f"If the field is not a paddle.Tensor (it is {type(batch_field[0])}), " | |||
f"it must have tolist() method.") | |||
shapes = [field.shape for field in batch_field] | |||
max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] | |||
if isinstance(dtype, np.dtype): | |||
@@ -174,6 +195,5 @@ def get_padded_paddle_tensor(batch_field, dtype=None, pad_val=0): | |||
""" | |||
shapes = get_shape(batch_field) | |||
tensor = paddle.to_tensor(np.full(shape=shapes, fill_value=pad_val), dtype=dtype) | |||
# tensor = paddle.full(shape=shapes, dtype=dtype, fill_value=pad_val) | |||
tensor = fill_tensor(batch_field, tensor, dtype=dtype) | |||
return tensor |
@@ -1,4 +1,8 @@ | |||
__all__ = [ | |||
"RawNumberPadder", | |||
"RawSequencePadder", | |||
"RawTensorPadder" | |||
] | |||
from .padder import Padder | |||
from .utils import is_number, get_padded_numpy_array, is_number_or_numpy_number | |||
@@ -63,3 +67,34 @@ class RawSequencePadder(Padder): | |||
:return: | |||
""" | |||
return get_padded_numpy_array(batch_field, dtype=dtype, pad_val=pad_val).tolist() | |||
class RawTensorPadder(Padder): | |||
def __init__(self, pad_val=0, ele_dtype=None, dtype=None): | |||
""" | |||
将类似于 [[1], [1, 2]] 的内容 pad 为 [[1, 0], [1, 2]] 。可以 pad 多重嵌套的数据。 | |||
:param pad_val: pad 的值 | |||
:param ele_dtype: 用于检测当前 field 的元素类型是否可以转换为 np.array 类型。 | |||
:param dtype: 输出的数据的 dtype 是什么 | |||
""" | |||
dtype = _get_dtype(ele_dtype, dtype, self.__class__.__name__) | |||
super().__init__(pad_val=pad_val, dtype=dtype) | |||
@staticmethod | |||
def pad(batch_field, pad_val, dtype): | |||
""" | |||
:param batch_field: | |||
:param pad_val: | |||
:param dtype: 该参数无意义。 | |||
:return: | |||
""" | |||
try: | |||
if not isinstance(batch_field[0], (list, tuple)): | |||
batch_field = [field.tolist() for field in batch_field] | |||
except AttributeError: | |||
raise RuntimeError(f"If the field is not a list or tuple(it is {type(batch_field[0])}), " | |||
f"it must have tolist() method.") | |||
return get_padded_numpy_array(batch_field, dtype=dtype, pad_val=pad_val).tolist() |
@@ -1,4 +1,8 @@ | |||
__all__ = [ | |||
'TorchNumberPadder', | |||
'TorchSequencePadder', | |||
'TorchTensorPadder' | |||
] | |||
from inspect import isclass | |||
import numpy as np | |||
@@ -37,7 +41,7 @@ def is_torch_tensor(dtype): | |||
def _get_dtype(ele_dtype, dtype, class_name): | |||
if not (ele_dtype is not None and (is_number_or_numpy_number(ele_dtype) or is_torch_tensor(ele_dtype))): | |||
if not (ele_dtype is None or (is_number_or_numpy_number(ele_dtype) or is_torch_tensor(ele_dtype))): | |||
raise EleDtypeUnsupportedError(f"`{class_name}` only supports padding python numbers " | |||
f"or numpy numbers or torch.Tensor but get `{ele_dtype}`.") | |||
@@ -97,7 +101,7 @@ class TorchSequencePadder(Padder): | |||
class TorchTensorPadder(Padder): | |||
def __init__(self, pad_val=0, ele_dtype=None, dtype=None): | |||
""" | |||
目前仅支持 [torch.tensor([3, 2], torch.tensor([1])] 类似的 | |||
目前支持 [torch.tensor([3, 2], torch.tensor([1])] 类似的。若内部元素不为 torch.tensor ,则必须含有 tolist() 方法。 | |||
:param pad_val: 需要 pad 的值。 | |||
:param ele_dtype: 用于检测当前 field 的元素类型是否可以转换为 torch.tensor 类型。 | |||
@@ -108,6 +112,13 @@ class TorchTensorPadder(Padder): | |||
@staticmethod | |||
def pad(batch_field, pad_val, dtype): | |||
try: | |||
if not isinstance(batch_field[0], torch.Tensor): | |||
batch_field = [torch.tensor(field.tolist()) for field in batch_field] | |||
except AttributeError: | |||
raise RuntimeError(f"If the field is not a torch.Tensor (it is {type(batch_field[0])}), " | |||
f"it must have tolist() method.") | |||
shapes = [field.shape for field in batch_field] | |||
max_shape = [len(batch_field)] + [max(*_) for _ in zip(*shapes)] | |||
tensor = torch.full(max_shape, fill_value=pad_val, dtype=dtype) | |||
@@ -1,6 +1,10 @@ | |||
__all__ = [ | |||
'get_padded_numpy_array' | |||
] | |||
from typing import Sequence, List | |||
from numbers import Number | |||
import re | |||
from inspect import isclass | |||
@@ -2,8 +2,6 @@ __all__ = [ | |||
'Loop', | |||
'EvaluateBatchLoop', | |||
'TrainBatchLoop', | |||
'State', | |||
'TrainerState', | |||
'Evaluator', | |||
'Trainer', | |||
] | |||
@@ -17,10 +17,10 @@ from .utils import State, TrainerState | |||
from .utils.utils import check_evaluate_every | |||
from .evaluator import Evaluator | |||
from fastNLP.core.controllers.utils.utils import TrainerEventTrigger, _TruncatedDataLoader | |||
from fastNLP.core.callbacks import Callback, CallbackManager, Events, EventsList | |||
from fastNLP.core.callbacks import Callback, CallbackManager | |||
from fastNLP.core.callbacks.callback import _CallbackWrapper | |||
from fastNLP.core.callbacks.callback_manager import prepare_callbacks | |||
from fastNLP.core.callbacks.callback_events import _SingleEventState | |||
from fastNLP.core.callbacks.callback_event import Event | |||
from fastNLP.core.drivers import Driver | |||
from fastNLP.core.drivers.utils import choose_driver | |||
from fastNLP.core.utils import get_fn_arg_names, match_and_substitute_params, nullcontext | |||
@@ -363,7 +363,6 @@ class Trainer(TrainerEventTrigger): | |||
raise e | |||
finally: | |||
self.on_train_end() | |||
self.driver.barrier() | |||
def _set_num_eval_batch_per_dl(self, num_eval_batch_per_dl): | |||
def _evaluate_fn(trainer: Trainer, evaluate_fn: Callable) -> None: | |||
@@ -399,7 +398,7 @@ class Trainer(TrainerEventTrigger): | |||
if self.cur_epoch_idx % evaluate_every == 0: | |||
self.run_evaluate() | |||
def add_callback_fn(self, event: Optional[Union[Events, EventsList]], fn: Callable): | |||
def add_callback_fn(self, event: Event, fn: Callable): | |||
r""" | |||
在初始化一个 trainer 实例后,用户可以使用这一函数来方便地添加 callback 函数; | |||
这一函数应当交给具体的 trainer 实例去做,因此不需要 `mark` 参数; | |||
@@ -407,19 +406,69 @@ class Trainer(TrainerEventTrigger): | |||
:param event: 特定的 callback 时机,用户需要为该 callback 函数指定其属于哪一个 callback 时机; | |||
:param fn: 具体的 callback 函数; | |||
""" | |||
if not isinstance(event, (_SingleEventState, EventsList)): | |||
raise ValueError("parameter event should only be `Events` or `EventsList` type.") | |||
if not isinstance(event, Event): | |||
raise ValueError("parameter event should only be `Event` type.") | |||
_custom_callback = _CallbackWrapper(event, fn) | |||
self.callback_manager.dissect_one_callback(_custom_callback) | |||
@classmethod | |||
def on(cls, event: Optional[Union[Events, EventsList]], marker: Optional[str] = None): | |||
def on(cls, event: Event, marker: Optional[str] = None): | |||
r""" | |||
函数修饰器,用户可以使用该函数来方便地将一个函数转变为 callback 函数,从而进行训练流程中的控制; | |||
支持的 event 时机有以下这些,其执行的时机顺序也如下所示。每个时机装饰的函数应该接受的参数列表也如下所示,例如 | |||
Trainer.__init__(): | |||
on_after_trainer_initialized(trainer, driver) | |||
Trainer.run(): | |||
if num_eval_sanity_batch>0: | |||
on_sanity_check_begin(trainer) # 如果设置了num_eval_sanity_batch | |||
on_sanity_check_end(trainer, sanity_check_res) | |||
try: | |||
on_train_begin(trainer) | |||
while cur_epoch_idx < n_epochs: | |||
on_train_epoch_begin(trainer) | |||
while batch_idx_in_epoch<=num_batches_per_epoch: | |||
on_fetch_data_begin(trainer) | |||
batch = next(dataloader) | |||
on_fetch_data_end(trainer) | |||
on_train_batch_begin(trainer, batch, indices) | |||
on_before_backward(trainer, outputs) # 其中 outputs 是经过 output_mapping(如果设置了) 后的,否则即为 model 的输出。 | |||
on_after_backward(trainer) | |||
on_before_zero_grad(trainer, optimizers) # 实际调用受到 accumulation_steps 影响 | |||
on_after_zero_grad(trainer, optimizers) # 实际调用受到 accumulation_steps 影响 | |||
on_before_optimizers_step(trainer, optimizers) # 实际调用受到 accumulation_steps 影响 | |||
on_after_optimizers_step(trainer, optimizers) # 实际调用受到 accumulation_steps 影响 | |||
on_train_batch_end(trainer) | |||
on_train_epoch_end(trainer) | |||
except BaseException: | |||
self.on_exception(trainer, exception) | |||
finally: | |||
on_train_end(trainer) | |||
其它 callback 例如 on_evaluate_begin(trainer)/on_evaluate_end(trainer, results)/on_save_model(trainer)/ | |||
on_load_model(trainer)/on_save_checkpoint(trainer)/on_load_checkpoint(trainer)将根据需要在Trainer.run()中 | |||
特定的时间调用。 | |||
Example:: | |||
from fastNLP import Event | |||
@Trainer.on(Event.on_save_model()) | |||
def do_something_1(trainer): | |||
# do something | |||
# 以上函数会在 Trainer 保存模型时执行。 | |||
@Trainer.on(Event.on_save_model(once=True)) | |||
def do_something_2(trainer): | |||
# do something | |||
# 以上函数会在 Trainer 保存模型时执行,但只执行一次。 | |||
@Trainer.on(Event.on_train_batch_begin(every=2)) | |||
def do_something_3(trainer, batch, indices): | |||
# do something | |||
# 以上函数会在 Trainer 每个新的 batch 开始的时候执行,但是是两个 batch 才执行一次。 | |||
注意如果你使用该函数修饰器来为你的训练添加 callback,请务必保证你加入 callback 函数的代码在实例化 `Trainer` 之前; | |||
:param event: 特定的 callback 时机,用户需要为该 callback 函数指定其属于哪一个 callback 时机; | |||
:param event: 特定的 callback 时机,用户需要为该 callback 函数指定其属于哪一个 callback 时机。每个时机运行的函数应该包含 | |||
特定的参数,可以通过上述说明查阅。 | |||
:param marker: 用来标记该 callback 函数属于哪几个具体的 trainer 实例;两个特殊情况:1.当 `marker` 为 None(默认情况)时, | |||
表示该 callback 函数只属于代码下方最近的一个 trainer 实例;2.当 `marker` 为 'all' 时,该 callback 函数会被所有的 trainer | |||
实例使用; | |||
@@ -427,9 +476,9 @@ class Trainer(TrainerEventTrigger): | |||
""" | |||
def wrapper(fn: Callable) -> Callable: | |||
cls._custom_callbacks[marker].append((event, fn)) | |||
callback_fn_args = get_fn_arg_names(getattr(Callback, event.value))[1:] | |||
_check_valid_parameters_number(fn, callback_fn_args) | |||
cls._custom_callbacks[marker].append((event, fn)) | |||
return fn | |||
return wrapper | |||
@@ -441,6 +490,7 @@ class Trainer(TrainerEventTrigger): | |||
""" | |||
_own_callbacks: List = copy.deepcopy(self._custom_callbacks["all"]) | |||
_own_callbacks.extend(self._custom_callbacks[None]) | |||
logger.debug(f"Get {len(_own_callbacks)} callback fns through Trainer.on().") | |||
self._custom_callbacks[None] = [] | |||
if self.marker is not None: | |||
if len(self._custom_callbacks[self.marker]) == 0: | |||
@@ -14,7 +14,7 @@ else: | |||
from fastNLP.core.dataset import DataSet as Dataset | |||
from fastNLP.core.utils.jittor_utils import jittor_collate_wraps | |||
from fastNLP.core.collators import Collator | |||
from fastNLP.core.utils.utils import indice_collate_wrapper | |||
from fastNLP.core.dataloaders.utils import indice_collate_wrapper | |||
from fastNLP.core.dataset import DataSet as FDataSet | |||
@@ -107,33 +107,33 @@ class JittorDataLoader: | |||
return len(self.dataset) // self.dataset.batch_size | |||
return (len(self.dataset) - 1) // self.dataset.batch_size + 1 | |||
def set_pad(self, field_name: Union[str, tuple], pad_val: Union[int, float, None] = 0, dtype=None, backend=None, | |||
pad_fn: Callable = None) -> "JittorDataLoader": | |||
def set_pad(self, field_name:Union[str, tuple], pad_val:Union[int, float, None]=0, dtype=None, backend=None, | |||
pad_fn:Callable=None) -> Collator: | |||
""" | |||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 | |||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); | |||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没 | |||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。 | |||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的 | |||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。 | |||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。 | |||
:param backend: 可选[None, 'numpy', 'torch', 'paddle', 'jittor'],分别代表,输出为 list, numpy.ndarray, torch.Tensor, | |||
paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值只能为 None 或 numpy 。 | |||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的 | |||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch | |||
形式,输出将被直接作为结果输出。 | |||
:return: 返回 Collator 自身 | |||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 | |||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); | |||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没 | |||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。 | |||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的 | |||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。如果 backend 为 None ,该值 | |||
无意义。 | |||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。 | |||
:param backend: 可选['raw', 'numpy', 'torch', 'paddle', 'jittor', 'auto'],分别代表,输出为 list, numpy.ndarray, | |||
torch.Tensor, paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值无意义 。 | |||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的 | |||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch | |||
形式,输出将被直接作为结果输出。 | |||
:return: 返回 Collator 自身 | |||
""" | |||
if isinstance(self._collate_fn, Collator): | |||
self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn, | |||
backend=backend) | |||
return self | |||
self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn, backend=backend) | |||
return self._collate_fn | |||
else: | |||
raise ValueError(f"collate_fn is not fastnlp collator") | |||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_pad() is allowed.") | |||
def set_ignore(self, *field_names) -> "JittorDataLoader": | |||
def set_ignore(self, *field_names) -> Collator: | |||
""" | |||
如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。 | |||
Ex:: | |||
@@ -146,18 +146,17 @@ class JittorDataLoader: | |||
""" | |||
if isinstance(self._collate_fn, Collator): | |||
self._collate_fn.set_ignore(*field_names) | |||
return self | |||
return self._collate_fn | |||
else: | |||
raise ValueError(f"collate_fn is not fastnlp collator") | |||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_ignore() is allowed.") | |||
def get_batch_indices(self) -> List[int]: | |||
""" | |||
获取当前数据的idx | |||
获取当前 batch 的 idx | |||
:return: | |||
""" | |||
return self.cur_batch_indices | |||
def prepare_jittor_dataloader(): | |||
... |
@@ -15,8 +15,9 @@ else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as DataLoader | |||
from fastNLP.core.collators.collator import Collator | |||
from fastNLP.core.utils.utils import indice_collate_wrapper | |||
from fastNLP.core.dataloaders.utils import indice_collate_wrapper | |||
from fastNLP.core.dataset import DataSet as FDataSet | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, RandomBatchSampler | |||
class _PaddleDataset(Dataset): | |||
@@ -54,6 +55,10 @@ class PaddleDataLoader(DataLoader): | |||
if not isinstance(dataset, _PaddleDataset): | |||
dataset = _PaddleDataset(dataset) | |||
if batch_sampler is None: | |||
batch_sampler = RandomBatchSampler(dataset, batch_size=batch_size, shuffle=shuffle, | |||
drop_last=drop_last) | |||
super(PaddleDataLoader, self).__init__(dataset=dataset, feed_list=feed_list, places=places, | |||
return_list=return_list, batch_sampler=batch_sampler, | |||
batch_size=batch_size, shuffle=shuffle, drop_last=drop_last, | |||
@@ -66,8 +71,6 @@ class PaddleDataLoader(DataLoader): | |||
if isinstance(dataset.dataset, FDataSet): | |||
self._collate_fn = dataset.dataset.collator | |||
self._collate_fn.set_backend(backend="paddle") | |||
# if collate_fn is not None: | |||
# self._collate_fn.add_collator(collate_fn) | |||
else: | |||
self._collate_fn = Collator(backend="paddle") | |||
@@ -94,33 +97,33 @@ class PaddleDataLoader(DataLoader): | |||
self.cur_batch_indices = indices | |||
yield data | |||
def set_pad(self, field_name: Union[str, tuple], pad_val: Union[int, float, None] = 0, dtype=None, backend=None, | |||
pad_fn: Callable = None) -> "PaddleDataLoader": | |||
def set_pad(self, field_name:Union[str, tuple], pad_val:Union[int, float, None]=0, dtype=None, backend=None, | |||
pad_fn:Callable=None) -> Collator: | |||
""" | |||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 | |||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); | |||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没 | |||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。 | |||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的 | |||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。 | |||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。 | |||
:param backend: 可选[None, 'numpy', 'torch', 'paddle', 'jittor'],分别代表,输出为 list, numpy.ndarray, torch.Tensor, | |||
paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值只能为 None 或 numpy 。 | |||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的 | |||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch | |||
形式,输出将被直接作为结果输出。 | |||
:return: 返回 Collator 自身 | |||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 | |||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); | |||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没 | |||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。 | |||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的 | |||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。如果 backend 为 None ,该值 | |||
无意义。 | |||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。 | |||
:param backend: 可选['raw', 'numpy', 'torch', 'paddle', 'jittor', 'auto'],分别代表,输出为 list, numpy.ndarray, | |||
torch.Tensor, paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值无意义 。 | |||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的 | |||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch | |||
形式,输出将被直接作为结果输出。 | |||
:return: 返回 Collator 自身 | |||
""" | |||
if isinstance(self._collate_fn, Collator): | |||
self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn, | |||
backend=backend) | |||
return self | |||
self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn, backend=backend) | |||
return self._collate_fn | |||
else: | |||
raise ValueError(f"collate_fn is not fastnlp collator") | |||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_pad() is allowed.") | |||
def set_ignore(self, *field_names) -> "PaddleDataLoader": | |||
def set_ignore(self, *field_names) -> Collator: | |||
""" | |||
如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。 | |||
Ex:: | |||
@@ -133,13 +136,13 @@ class PaddleDataLoader(DataLoader): | |||
""" | |||
if isinstance(self._collate_fn, Collator): | |||
self._collate_fn.set_ignore(*field_names) | |||
return self | |||
return self._collate_fn | |||
else: | |||
raise ValueError(f"collate_fn is not fastnlp collator") | |||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_ignore() is allowed.") | |||
def get_batch_indices(self) -> List[int]: | |||
""" | |||
获取当前数据的idx | |||
获取当前 batch 的 idx | |||
:return: | |||
""" | |||
@@ -147,7 +150,8 @@ class PaddleDataLoader(DataLoader): | |||
def prepare_paddle_dataloader(ds_or_db, feed_list=None, places=None, | |||
return_list: bool = True, batch_sampler=None, | |||
return_list: bool = True, | |||
batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None, | |||
train_batch_size: int = 1, shuffle: bool = False, | |||
drop_last: bool = False, collate_fn: Union[Callable, str, None] = None, | |||
num_workers: int = 0, use_buffer_reader: bool = True, | |||
@@ -3,14 +3,14 @@ __all__ = [ | |||
'prepare_torch_dataloader' | |||
] | |||
from typing import Optional, Callable, Sequence, List, Union, Tuple, Dict, Mapping | |||
from typing import Optional, Callable, Sequence, Union, Tuple, Dict, Mapping, List | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.core.collators import Collator | |||
from fastNLP.core.utils.utils import indice_collate_wrapper | |||
from fastNLP.core.dataloaders.utils import indice_collate_wrapper | |||
from fastNLP.io.data_bundle import DataBundle | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, UnrepeatedSampler | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, UnrepeatedSampler, RandomSampler | |||
if _NEED_IMPORT_TORCH: | |||
from torch.utils.data import DataLoader, Sampler | |||
@@ -76,6 +76,10 @@ class TorchDataLoader(DataLoader): | |||
if not isinstance(dataset, _FDataSet): | |||
dataset = _FDataSet(dataset) | |||
if sampler is None and batch_sampler is None: | |||
sampler = RandomSampler(dataset, shuffle=shuffle) | |||
shuffle=False | |||
super().__init__(dataset=dataset, batch_size=batch_size, shuffle=shuffle, sampler=sampler, | |||
batch_sampler=batch_sampler, num_workers=num_workers, collate_fn=None, | |||
pin_memory=pin_memory, drop_last=drop_last, timeout=timeout, worker_init_fn=worker_init_fn, | |||
@@ -87,9 +91,6 @@ class TorchDataLoader(DataLoader): | |||
if isinstance(dataset.dataset, DataSet): # 使用了 fastnlp dataset | |||
self._collate_fn = dataset.dataset.collator | |||
self._collate_fn.set_backend(backend="torch") | |||
# if collate_fn is not None and collate_fn is not default_collate: | |||
# # 防止ddp重新初始化时候将torch dataloader的默认collate加进来 | |||
# self._collate_fn.add_collator(collate_fn) | |||
else: | |||
self._collate_fn = Collator(backend="torch") | |||
else: | |||
@@ -112,31 +113,32 @@ class TorchDataLoader(DataLoader): | |||
yield data | |||
def set_pad(self, field_name:Union[str, tuple], pad_val:Union[int, float, None]=0, dtype=None, backend=None, | |||
pad_fn:Callable=None) -> "TorchDataLoader": | |||
pad_fn:Callable=None) -> Collator: | |||
""" | |||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 | |||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 | |||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); | |||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没 | |||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。 | |||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的 | |||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。 | |||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。 | |||
:param backend: 可选[None, 'numpy', 'torch', 'paddle', 'jittor'],分别代表,输出为 list, numpy.ndarray, torch.Tensor, | |||
paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值只能为 None 或 numpy 。 | |||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的 | |||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch | |||
形式,输出将被直接作为结果输出。 | |||
:return: 返回 Collator 自身 | |||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); | |||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没 | |||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。 | |||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的 | |||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。如果 backend 为 None ,该值 | |||
无意义。 | |||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。 | |||
:param backend: 可选['raw', 'numpy', 'torch', 'paddle', 'jittor', 'auto'],分别代表,输出为 list, numpy.ndarray, | |||
torch.Tensor, paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值无意义 。 | |||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的 | |||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch | |||
形式,输出将被直接作为结果输出。 | |||
:return: 返回 Collator 自身 | |||
""" | |||
if isinstance(self._collate_fn, Collator): | |||
self._collate_fn.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, pad_fn=pad_fn, backend=backend) | |||
return self | |||
return self._collate_fn | |||
else: | |||
raise ValueError(f"collate_fn is not fastnlp collator") | |||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_pad() is allowed.") | |||
def set_ignore(self, *field_names) -> "TorchDataLoader": | |||
def set_ignore(self, *field_names) -> Collator: | |||
""" | |||
如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。 | |||
Ex:: | |||
@@ -149,24 +151,23 @@ class TorchDataLoader(DataLoader): | |||
""" | |||
if isinstance(self._collate_fn, Collator): | |||
self._collate_fn.set_ignore(*field_names) | |||
return self | |||
return self._collate_fn | |||
else: | |||
raise ValueError(f"collate_fn is not fastnlp collator") | |||
raise ValueError(f"Only when the collate_fn is a fastNLP Collator, set_ignore() is allowed.") | |||
def get_batch_indices(self) -> List[int]: | |||
""" | |||
获取当前数据的idx | |||
获取当前 batch 的 idx | |||
:return: | |||
""" | |||
return self.cur_batch_indices | |||
def prepare_torch_dataloader(ds_or_db: Union[DataSet, DataBundle, Sequence[DataSet], Mapping[str, DataSet]], | |||
batch_size: int = 1, | |||
shuffle: bool = False, sampler: Optional["Sampler[int]"] = None, | |||
batch_sampler: Optional["Sampler[Sequence[int]]"] = None, | |||
shuffle: bool = False, sampler: Union["Sampler[int]", ReproducibleSampler, UnrepeatedSampler] = None, | |||
batch_sampler: Union["Sampler[Sequence[int]]", ReproducibleBatchSampler] = None, | |||
num_workers: int = 0, collate_fn: Union[str, Callable, None] = None, | |||
pin_memory: bool = False, drop_last: bool = False, | |||
timeout: float = 0, worker_init_fn: Optional[Callable] = None, | |||
@@ -0,0 +1,16 @@ | |||
def indice_collate_wrapper(func): | |||
""" | |||
其功能是封装一层collate_fn,将dataset取到的tuple数据分离开,将idx打包为indices。 | |||
:param func: 需要修饰的函数 | |||
:return: | |||
""" | |||
def wrapper(tuple_data): | |||
indice, ins_list = [], [] | |||
for idx, ins in tuple_data: | |||
indice.append(idx) | |||
ins_list.append(ins) | |||
return indice, func(ins_list) | |||
return wrapper |
@@ -770,17 +770,8 @@ class DataSet: | |||
df = self.to_pandas() | |||
return df.to_csv(path, encoding="utf-8") | |||
def set_ignore(self, *field_names) -> None: | |||
""" | |||
被设置为inputs的field_names,会输入到AutoCollator中,未被设置默认过滤掉 | |||
:param field_names: | |||
:return: | |||
""" | |||
self.collator.set_ignore(*field_names) | |||
@property | |||
def collator(self): | |||
def collator(self) -> Collator: | |||
if self._collator is None: | |||
self._collator = Collator() | |||
return self._collator |
@@ -22,7 +22,7 @@ from fastNLP.core.utils import ( | |||
rank_zero_rm | |||
) | |||
from fastNLP.core.samplers import ( | |||
RandomBatchSampler, | |||
ReproduceBatchSampler, | |||
ReproducibleSampler, | |||
ReproducibleBatchSampler, | |||
RandomSampler, | |||
@@ -485,7 +485,7 @@ class PaddleFleetDriver(PaddleDriver): | |||
return self.model, model.forward | |||
def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleSampler, RandomBatchSampler]], | |||
def set_dist_repro_dataloader(self, dataloader, dist: Optional[Union[str, ReproducibleSampler, ReproduceBatchSampler]], | |||
reproducible: bool = False): | |||
r""" | |||
根据输入的 dataloader 得到一个 支持分布式 (distributed) 与 可复现的 (reproducible) 的 dataloader。 | |||
@@ -22,7 +22,7 @@ from fastNLP.core.log import logger | |||
from fastNLP.core.samplers import ( | |||
ReproducibleBatchSampler, | |||
ReproducibleSampler, | |||
RandomBatchSampler, | |||
ReproduceBatchSampler, | |||
RandomSampler, | |||
) | |||
@@ -345,7 +345,7 @@ class PaddleDriver(Driver): | |||
raise RuntimeError("It is not allowed to use checkpoint retraining when you do not use our or " | |||
"`ReproducibleSampler`.") | |||
else: | |||
sampler = RandomBatchSampler( | |||
sampler = ReproduceBatchSampler( | |||
batch_sampler=dataloader_args.batch_sampler if dataloader_args.batch_sampler is not None else dataloader_args.sampler, | |||
batch_size=dataloader_args.batch_size, | |||
drop_last=dataloader_args.drop_last | |||
@@ -476,7 +476,7 @@ class PaddleDriver(Driver): | |||
res.shuffle = True | |||
else: | |||
res.shuffle = False | |||
# RandomBatchSampler 的情况 | |||
# ReproduceBatchSampler 的情况 | |||
elif hasattr(dataloader.batch_sampler, "batch_sampler"): | |||
batch_sampler = dataloader.batch_sampler.batch_sampler | |||
res.sampler = batch_sampler.sampler | |||
@@ -14,7 +14,7 @@ from fastNLP.core.utils import ( | |||
from fastNLP.core.utils.utils import _get_fun_msg | |||
from fastNLP.core.samplers import ( | |||
ReproducibleBatchSampler, | |||
RandomBatchSampler, | |||
ReproduceBatchSampler, | |||
ReproducibleSampler, | |||
RandomSampler, | |||
re_instantiate_sampler, | |||
@@ -177,7 +177,7 @@ class PaddleSingleDriver(PaddleDriver): | |||
logger.debug("Replace paddle RandomSampler into fastNLP RandomSampler.") | |||
return replace_sampler(dataloader, sampler) | |||
else: | |||
batch_sampler = RandomBatchSampler( | |||
batch_sampler = ReproduceBatchSampler( | |||
batch_sampler=args.batch_sampler, | |||
batch_size=args.batch_size, | |||
drop_last=args.drop_last | |||
@@ -15,7 +15,7 @@ from .torch_driver import TorchDriver | |||
from fastNLP.core.drivers.torch_driver.utils import replace_sampler, replace_batch_sampler | |||
from fastNLP.core.utils import auto_param_call | |||
from fastNLP.core.utils.utils import _get_fun_msg | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, re_instantiate_sampler, RandomBatchSampler | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, re_instantiate_sampler, ReproduceBatchSampler | |||
from fastNLP.core.samplers import RandomSampler | |||
from fastNLP.core.log import logger | |||
@@ -113,7 +113,7 @@ class TorchSingleDriver(TorchDriver): | |||
logger.debug("Replace torch RandomSampler into fastNLP RandomSampler.") | |||
return replace_sampler(dataloader, sampler) | |||
else: | |||
batch_sampler = RandomBatchSampler( | |||
batch_sampler = ReproduceBatchSampler( | |||
batch_sampler=args.batch_sampler, | |||
batch_size=args.batch_size, | |||
drop_last=args.drop_last | |||
@@ -31,7 +31,7 @@ from fastNLP.core.utils import apply_to_collection, torch_move_data_to_device | |||
from fastNLP.envs import rank_zero_call | |||
from fastNLP.envs import FASTNLP_SEED_WORKERS, FASTNLP_GLOBAL_RANK, FASTNLP_MODEL_FILENAME, FASTNLP_CHECKPOINT_FILENAME | |||
from fastNLP.core.log import logger | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, RandomBatchSampler, RandomSampler | |||
from fastNLP.core.samplers import ReproducibleBatchSampler, ReproducibleSampler, ReproduceBatchSampler, RandomSampler | |||
class TorchDriver(Driver): | |||
@@ -293,7 +293,7 @@ class TorchDriver(Driver): | |||
raise RuntimeError("It is not allowed to use checkpoint retraining when you do not use our or " | |||
"`ReproducibleSampler`.") | |||
else: | |||
sampler = RandomBatchSampler( | |||
sampler = ReproduceBatchSampler( | |||
batch_sampler=dataloader_args.batch_sampler if dataloader_args.batch_sampler is not None else dataloader_args.sampler, | |||
batch_size=dataloader_args.batch_size, | |||
drop_last=dataloader_args.drop_last | |||
@@ -407,7 +407,7 @@ class TorchDriver(Driver): | |||
res.shuffle = True | |||
else: | |||
res.shuffle = False | |||
# RandomBatchSampler 的情况 | |||
# ReproduceBatchSampler 的情况 | |||
elif hasattr(dataloader.batch_sampler, "batch_sampler"): | |||
batch_sampler = dataloader.batch_sampler.batch_sampler | |||
res.sampler = batch_sampler.sampler | |||
@@ -0,0 +1,25 @@ | |||
__all__ = [ | |||
'print' | |||
] | |||
from .logger import logger | |||
def print(*args, sep=' ', end='\n', file=None, flush=False): | |||
""" | |||
用来重定向 print 函数至 logger.info 的函数。 | |||
Example: | |||
from fastNLP import print | |||
print("This is a test") # 等价于调用了 logger.info("This is a test") | |||
:param args: 需要打印的内容 | |||
:param sep: 存在多个输入时,使用的间隔。 | |||
:param end: 该参数在当前设置无意义,因为结尾一定会被加入 \n 。 | |||
:param file: 该参数无意义。 | |||
:param flush: 该参数无意义。 | |||
:return: | |||
""" | |||
line = sep.join(args) | |||
logger.info(line) |
@@ -14,9 +14,10 @@ __all__ = [ | |||
"UnrepeatedSortedSampler", | |||
"UnrepeatedSequentialSampler", | |||
"RandomBatchSampler", | |||
"ReproduceBatchSampler", | |||
"BucketedBatchSampler", | |||
"ReproducibleBatchSampler", | |||
"RandomBatchSampler", | |||
"re_instantiate_sampler" | |||
] | |||
@@ -26,5 +27,5 @@ from .mix_sampler import MixSampler, DopedSampler, MixSequentialSampler, Polling | |||
from .reproducible_sampler import ReproducibleSampler, RandomSampler, SequentialSampler, SortedSampler | |||
from .utils import re_instantiate_sampler | |||
from .conversion_utils import conversion_between_reproducible_and_unrepeated_sampler | |||
from .reproducible_batch_sampler import RandomBatchSampler, BucketedBatchSampler, ReproducibleBatchSampler | |||
from .reproducible_batch_sampler import ReproduceBatchSampler, BucketedBatchSampler, ReproducibleBatchSampler, RandomBatchSampler | |||
@@ -1,5 +1,6 @@ | |||
__all__ = [ | |||
'BucketedBatchSampler', | |||
"ReproduceBatchSampler", | |||
"RandomBatchSampler" | |||
] | |||
@@ -7,7 +8,6 @@ import math | |||
from copy import deepcopy | |||
from typing import Dict, Union, List | |||
from itertools import chain | |||
import os | |||
import numpy as np | |||
@@ -54,13 +54,12 @@ class ReproducibleBatchSampler: | |||
raise NotImplementedError("Each specific batch_sampler should implement its own `batch_idx_in_epoch` property.") | |||
class RandomBatchSampler(ReproducibleBatchSampler): | |||
# 这两个参数的值应当交给 driver 的 get_dataloader_args 函数去拿; | |||
class ReproduceBatchSampler(ReproducibleBatchSampler): | |||
def __init__(self, batch_sampler, batch_size: int, drop_last: bool, **kwargs): | |||
""" | |||
可以使得 batch_sampler 对象状态恢复的 wrapper 。 | |||
:param batch_sampler: 可迭代出 数字 或 数字列表 的可迭代对象。RandomBatchSampler 将首先遍历一边该对象,然后将迭代 | |||
:param batch_sampler: 可迭代出 数字 或 数字列表 的可迭代对象。ReproduceBatchSampler 将首先遍历一边该对象,然后将迭代 | |||
出来的序号暂存起来,使用时按照 batch_size 的 batch 大小吐出序号列表。 | |||
:param batch_size: 每个 batch 的大小是多少。 | |||
:param drop_last: 如果最后一个 batch 无法构成 batch_size 那么多个 sample ,是否丢掉。 | |||
@@ -143,7 +142,7 @@ class RandomBatchSampler(ReproducibleBatchSampler): | |||
self.need_reinitialize = False | |||
def set_distributed(self, num_replicas, rank, pad=True): | |||
raise RuntimeError(f"RandomBatchSampler does not support to change to distributed training.") | |||
raise RuntimeError(f"ReproduceBatchSampler does not support to change to distributed training.") | |||
def set_epoch(self, epoch): | |||
if hasattr(self.batch_sampler, "sampler") and hasattr(self.batch_sampler.sampler, 'set_epoch') and callable(self.batch_sampler.sampler.set_epoch): | |||
@@ -158,6 +157,211 @@ class RandomBatchSampler(ReproducibleBatchSampler): | |||
(len(self.index_list) - self.num_consumed_samples + self.batch_size - 1) // self.batch_size | |||
class RandomBatchSampler(ReproducibleBatchSampler): | |||
def __init__(self, dataset, batch_size:int = 32, shuffle: bool = True, | |||
drop_last: bool = False, seed: int = 0, **kwargs): | |||
""" | |||
随机分 batch 的 batch_sampler 。 | |||
:param dataset: 实现了 __len__ 方法的数据容器。 | |||
:param batch_size: 每个 batch 的大小 | |||
:param shuffle: 如果为 True,将不进行 shuffle,实际上数据会以从长到短的方式输出。 | |||
:param drop_last: 如果最后一个 batch 的 sample 数量无法凑齐 batch_size 这么多,是否需要丢掉。 | |||
:param seed: 设置的随机数种子 | |||
:param kwargs: fastNLP 保留使用 | |||
""" | |||
super().__init__() | |||
self.dataset = dataset | |||
self.batch_size = batch_size | |||
self.shuffle = shuffle | |||
self.drop_last = drop_last | |||
self.seed = seed | |||
self.num_consumed_samples = kwargs.get("num_consumed_samples", 0) # 总共迭代了多少数据了,包括多卡情况下的其它卡上的输出的数量 | |||
# 多卡的相关的参数 | |||
self.num_replicas = kwargs.get("num_replicas", 1) | |||
self.rank = kwargs.get("rank", 0) | |||
self.epoch = kwargs.get("epoch", -1) | |||
self.pad = kwargs.get("pad", False) # 该参数在单卡上不具有任何意义; | |||
# 是否处于iteration之间,为True不允许调用 set_distributed()和load_state_dict() | |||
self.during_iter = kwargs.get("during_iter", False) | |||
# 以下变量为内部使用恢复状态的变量。 | |||
self.old_batch_size = kwargs.get('old_batch_size', self.batch_size) | |||
def set_distributed(self, num_replicas, rank, pad=True): | |||
assert self.during_iter is False, "Cannot set the sampler to be distributed when it is " \ | |||
"during an unfinished iteration." | |||
assert num_replicas > 0 and isinstance(num_replicas, int) | |||
assert isinstance(rank, int) and 0 <= rank < num_replicas | |||
# 注意初始化该函数时,所有的状态都应当默认是一个 epoch 刚开始训练的状态; | |||
self.num_replicas = num_replicas | |||
self.rank = rank | |||
self.pad = pad | |||
return self | |||
def __iter__(self): | |||
if self.during_iter: # 如果发现_during_iter为True,说明之前的还没结束,只有强制重新初始化了 | |||
self.num_consumed_samples = 0 | |||
self.during_iter = True | |||
indices = list(range(len(self.dataset))) | |||
if self.shuffle: | |||
if self.num_consumed_samples > 0: # 需要先按照原来的排序,删掉多余的 | |||
_batches = [] | |||
for _i in range(self.old_num_replicas): | |||
_indices = indices[_i:len(indices):self.old_num_replicas] | |||
__batches = self.batchify(_indices, self.old_batch_size, seed=self.seed + self.epoch) | |||
_batches.append(__batches) | |||
batches = list(chain(*[_ for _ in zip(*_batches)])) | |||
indices = list(chain(*batches)) | |||
indices = indices[self.num_consumed_samples:] | |||
# 取出这个 rank , | |||
indices = indices[self.rank:len(indices):self.num_replicas] | |||
batches = self.batchify(indices, self.batch_size, seed=self.seed + self.epoch) | |||
batches = list(map(list, batches)) | |||
else: | |||
indices = indices[self.num_consumed_samples:] | |||
indices = indices[self.rank:len(indices):self.num_replicas] | |||
_num_batches = len(indices) // self.batch_size | |||
if _num_batches == 0: | |||
batches = [indices] | |||
else: | |||
batches = list(map(list, np.array_split(indices[:_num_batches*self.batch_size], _num_batches))) | |||
if len(indices)%self.batch_size!=0: | |||
batches.append(indices[_num_batches*self.batch_size:]) | |||
need_pad_num = (len(self.dataset)-self.num_consumed_samples) % self.num_replicas | |||
if self.pad and need_pad_num !=0 and need_pad_num<=self.rank: | |||
if len(batches) > 0: | |||
if len(batches[-1])<self.batch_size: | |||
batches[-1].append(batches[-1][0]) # 这里可以保证这个bucket的长度没被破坏。 | |||
else: | |||
batches.append([batches[-1][0]]) | |||
elif self.pad is False and need_pad_num !=0 and need_pad_num>self.rank: | |||
if len(batches): | |||
batches[-1].pop(-1) | |||
if len(batches[-1])==0: | |||
batches.pop(-1) | |||
assert sum(map(len, batches)) == self.num_left_samples | |||
if self.drop_last and len(batches) >= 1 and len(batches[-1]) < self.batch_size: | |||
batches = batches[:-1] | |||
for batch in batches: | |||
self.num_consumed_samples += self.num_replicas * len(batch) | |||
yield list(map(int, batch)) | |||
self.during_iter = False | |||
self.num_consumed_samples = 0 | |||
self.old_batch_size = self.batch_size | |||
self.old_num_replicas = self.num_replicas | |||
if self.epoch < 0: # 防止用户没有修改epoch,导致每个epoch都一样了 | |||
self.epoch -= 1 | |||
def batchify(self, indices, batch_size, seed): | |||
""" | |||
将 indices 分为 batches | |||
:param sorted_indices: List[int] | |||
:param batch_size: int | |||
:param seed: int | |||
:return: List[List[int]] | |||
""" | |||
# 实际的 bucket 大小 | |||
rng = np.random.default_rng(abs(seed)) | |||
rng.shuffle(indices) | |||
num_samples = 0 | |||
batches = [] | |||
while num_samples<len(indices): | |||
batches.append(indices[num_samples:num_samples+batch_size]) | |||
num_samples += batch_size | |||
return batches | |||
def set_epoch(self, epoch): | |||
self.epoch = epoch | |||
@property | |||
def batch_idx_in_epoch(self): | |||
if self.drop_last: | |||
return len(self.dataset) // self.num_replicas // self.batch_size - self.num_left_samples // self.batch_size | |||
else: | |||
return (len(self.dataset) // self.num_replicas + self.batch_size - 1) // self.batch_size - \ | |||
(self.num_left_samples + self.batch_size - 1) // self.batch_size | |||
@property | |||
def total_size(self): | |||
""" | |||
这个变量代表的含义是当前这个sampler会最终产生出的index数量(包括了其它rank的),因为replica和pad的原因,这个值可能等于、 | |||
大于或者小于len(dataset) | |||
:return: | |||
""" | |||
return self.num_consumed_samples + self.num_replicas*self.num_left_samples | |||
@property | |||
def num_left_samples(self): | |||
""" | |||
返回当前 iteration 还有多少个 sample 结束,表示的是当前 rank 的还剩多少。 | |||
:return: | |||
""" | |||
num_consumed_samples = self.num_consumed_samples | |||
return math.ceil((len(self.dataset) - num_consumed_samples) / self.num_replicas) if \ | |||
self.pad else math.floor(((len(self.dataset) - num_consumed_samples) / self.num_replicas)) | |||
def __len__(self)->int: | |||
""" | |||
返回当前 sampler 还会返回多少个 batch 的数据 | |||
:return: | |||
""" | |||
num_sampler_per_rank = self.total_size//self.num_replicas | |||
num_batches = num_sampler_per_rank//self.batch_size if self.drop_last else \ | |||
(num_sampler_per_rank+self.batch_size-1)//self.batch_size | |||
return num_batches | |||
def state_dict(self) -> Dict: | |||
if self.old_batch_size != self.batch_size: | |||
raise RuntimeError("BucketedBatchSampler does not support saving before last checkpoint states have been" | |||
" consumed. ") | |||
states = {'seed': self.seed, 'epoch': self.epoch, 'num_consumed_samples': self.num_consumed_samples, | |||
'sampler_type': self.__class__.__name__, 'length': len(self.dataset), 'shuffle': self.shuffle, | |||
'batch_size': self.batch_size, | |||
'num_replicas': self.num_replicas} | |||
return states | |||
def load_state_dict(self, states: Dict): | |||
# 如果 self.during_iter 是 True,那么 num_consumed_samples 一定是 0; | |||
assert self.during_iter is False, "Cannot call load_state_dict() when it is " \ | |||
"during an unfinished iteration." | |||
assert states['sampler_type'] == self.__class__.__name__, f"The sampler type in checkpoint is {states['sampler_type']}," \ | |||
f"we cannot use {self.__class__.__name__} to load it." | |||
length = states['length'] | |||
assert length == len(self.dataset), "The number of samples is different between the checkpoint record " \ | |||
"and current dataset." | |||
self.seed = states['seed'] | |||
self.epoch = states['epoch'] | |||
self.num_consumed_samples = states['num_consumed_samples'] | |||
if self.num_consumed_samples>=length: # 如果保存的时候已经到达了最后一个sample了,则直接将结果重置为0 | |||
self.num_consumed_samples = 0 | |||
if self.shuffle != states['shuffle']: | |||
logger.info(f"The shuffle from the checkpoint is {states['shuffle']}, while set as {self.shuffle}, " | |||
f"we use shuffle={states['shuffle']}") | |||
self.shuffle = states["shuffle"] | |||
self.old_batch_size = states['batch_size'] | |||
self.old_num_replicas = states['num_replicas'] | |||
class BucketedBatchSampler(ReproducibleBatchSampler): | |||
def __init__(self, dataset, length: Union[List[int], str], batch_size:int = 32, num_batch_per_bucket:int = 10, | |||
shuffle: bool = True, drop_last: bool = False, seed: int = 0, **kwargs): | |||
@@ -16,6 +16,8 @@ from fastNLP.core.dataset import DataSet | |||
class ReproducibleSampler: | |||
""" | |||
可复现的 Sampler 对象。 | |||
注意所有继承 `ReproducibleSampler` 的类的 `__init__` 方法中都需要加入参数 `**kwargs`,用来使我们再断点重训时重新实例化这个 sampler | |||
或者 batch_sampler;注意,所有在 init 中初始化的变量,都不能含有 _ 下横线作为开头;所有不在 init 中设置的变量都必须以下横线开头。 | |||
@@ -54,13 +56,12 @@ class RandomSampler(ReproducibleSampler): | |||
def __init__(self, dataset, shuffle: bool = True, seed: int = 0, **kwargs): | |||
""" | |||
:param dataset: 实现了 __len__ 方法的数据容器 | |||
:param shuffle: 是否在每次 iterate 的时候打乱顺序。 | |||
:param seed: 随机数种子。 | |||
:param kwargs: 用户不需要使用,fastNLP 内部使用 | |||
""" | |||
super(RandomSampler, self).__init__() | |||
self.dataset = dataset | |||
self.shuffle = shuffle | |||
self.seed = seed | |||
@@ -21,7 +21,6 @@ __all__ = [ | |||
'nullcontext', | |||
'pretty_table_printer', | |||
'Option', | |||
'indice_collate_wrapper', | |||
'deprecated', | |||
'seq_len_to_mask', | |||
'rank_zero_rm', | |||
@@ -37,6 +36,7 @@ from .torch_paddle_utils import torch_paddle_move_data_to_device | |||
from .torch_utils import torch_move_data_to_device | |||
from .utils import get_fn_arg_names, auto_param_call, check_user_specific_params, \ | |||
dataclass_to_dict, match_and_substitute_params, apply_to_collection, nullcontext, pretty_table_printer, Option, \ | |||
indice_collate_wrapper, deprecated, seq_len_to_mask, rank_zero_rm, rank_zero_mkdir | |||
deprecated, seq_len_to_mask, rank_zero_rm, rank_zero_mkdir | |||
from ..dataloaders.utils import indice_collate_wrapper | |||
@@ -1,5 +1,5 @@ | |||
import functools | |||
class DummyClass: | |||
def __call__(self, *args, **kwargs): | |||
return | |||
def __init__(self, *args, **kwargs): | |||
pass |
@@ -35,6 +35,7 @@ def paddle_to(data, device: Union[str, int]): | |||
else: | |||
return data.cuda(get_paddle_device_id(device)) | |||
def get_paddle_gpu_str(device: Union[str, int]): | |||
""" | |||
获得 `gpu:x` 类型的设备名 | |||
@@ -46,6 +47,7 @@ def get_paddle_gpu_str(device: Union[str, int]): | |||
return device.replace("cuda", "gpu") | |||
return f"gpu:{device}" | |||
def get_paddle_device_id(device: Union[str, int]): | |||
""" | |||
获得 gpu 的设备id | |||
@@ -94,18 +96,21 @@ def paddle_move_data_to_device(batch: Any, device: Optional[str] = None, | |||
return apply_to_collection(batch, dtype=paddle.Tensor, function=batch_to) | |||
def is_in_paddle_dist(): | |||
""" | |||
判断是否处于分布式的进程下,使用 global_rank 和 selected_gpus 判断 | |||
""" | |||
return ('PADDLE_RANK_IN_NODE' in os.environ and 'FLAGS_selected_gpus' in os.environ) | |||
def is_in_fnlp_paddle_dist(): | |||
""" | |||
判断是否处于 FastNLP 拉起的分布式进程中 | |||
""" | |||
return FASTNLP_DISTRIBUTED_CHECK in os.environ | |||
def is_in_paddle_launch_dist(): | |||
""" | |||
判断是否处于 launch 启动的分布式进程中 | |||
@@ -6,7 +6,7 @@ import warnings | |||
from dataclasses import is_dataclass | |||
from copy import deepcopy | |||
from collections import defaultdict, OrderedDict | |||
from typing import Callable, List, Any, Dict, AnyStr, Union, Mapping, Sequence, Optional | |||
from typing import Callable, List, Any, Dict, AnyStr, Union, Mapping, Sequence | |||
from typing import Tuple, Optional | |||
from time import sleep | |||
@@ -35,7 +35,6 @@ __all__ = [ | |||
'nullcontext', | |||
'pretty_table_printer', | |||
'Option', | |||
'indice_collate_wrapper', | |||
'deprecated', | |||
'seq_len_to_mask', | |||
'rank_zero_rm', | |||
@@ -513,24 +512,6 @@ class Option(dict): | |||
self.update(state) | |||
def indice_collate_wrapper(func): | |||
""" | |||
其功能是封装一层collate_fn,将dataset取到的tuple数据分离开,将idx打包为indices。 | |||
:param func: 需要修饰的函数 | |||
:return: | |||
""" | |||
def wrapper(tuple_data): | |||
indice, ins_list = [], [] | |||
for idx, ins in tuple_data: | |||
indice.append(idx) | |||
ins_list.append(ins) | |||
return indice, func(ins_list) | |||
return wrapper | |||
_emitted_deprecation_warnings = set() | |||
@@ -332,13 +332,44 @@ class DataBundle: | |||
show_progress_bar=show_progress_bar, progress_desc=progress_desc) | |||
return res | |||
def set_pad_val(self, *field_names, val=0) -> None: | |||
def set_pad(self, field_name, pad_val=0, dtype=None, backend=None, pad_fn=None) -> "DataBundle": | |||
""" | |||
如果需要对某个 field 的内容进行特殊的调整,请使用这个函数。 | |||
:param field_name: 需要调整的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组表示多层次的 key,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); | |||
如果 __getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。如果该 field 在数据中没 | |||
有找到,则报错;如果 __getitem__ 返回的是就是整体内容,请使用 "_single" 。 | |||
:param pad_val: 这个 field 的默认 pad 值。如果设置为 None,则表示该 field 不需要 pad , fastNLP 默认只会对可以 pad 的 | |||
field 进行 pad,所以如果对应 field 本身就不是可以 pad 的形式,可以不需要主动设置为 None 。如果 backend 为 None ,该值 | |||
无意义。 | |||
:param dtype: 对于需要 pad 的 field ,该 field 的数据 dtype 应该是什么。 | |||
:param backend: 可选['raw', 'numpy', 'torch', 'paddle', 'jittor', 'auto'],分别代表,输出为 list, numpy.ndarray, | |||
torch.Tensor, paddle.Tensor, jittor.Var 类型。若 pad_val 为 None ,该值无意义 。 | |||
:param pad_fn: 指定当前 field 的 pad 函数,传入该函数则 pad_val, dtype, backend 等参数失效。pad_fn 的输入为当前 field 的 | |||
batch 形式。 Collator 将自动 unbatch 数据,然后将各个 field 组成各自的 batch 。pad_func 的输入即为 field 的 batch | |||
形式,输出将被直接作为结果输出。 | |||
:return: self | |||
""" | |||
for _, ds in self.iter_datasets(): | |||
ds.set_pad_val(*field_names, val=val) | |||
ds.collator.set_pad(field_name=field_name, pad_val=pad_val, dtype=dtype, backend=backend, | |||
pad_fn=pad_fn) | |||
return self | |||
def set_input(self, *field_names) -> None: | |||
def set_ignore(self, *field_names) -> "DataBundle": | |||
""" | |||
如果有的内容不希望输出,可以在此处进行设置,被设置的 field 将在 batch 的输出中被忽略。 | |||
Ex:: | |||
collator.set_ignore('field1', 'field2') | |||
:param field_names: 需要忽略的 field 的名称。如果 Dataset 的 __getitem__ 方法返回的是 dict 类型的,则可以直接使用对应的 | |||
field 的 key 来表示,如果是 nested 的 dict,可以使用元组来表示,例如 {'a': {'b': 1}} 中的使用 ('a', 'b'); 如果 | |||
__getitem__ 返回的是 Sequence 类型的,则可以使用 '_0', '_1' 表示序列中第 0 或 1 个元素。 | |||
:return: self | |||
""" | |||
for _, ds in self.iter_datasets(): | |||
ds.set_input(*field_names) | |||
ds.collator.set_ignore(*field_names) | |||
return self | |||
def __repr__(self) -> str: | |||
_str = '' | |||
@@ -0,0 +1,208 @@ | |||
import pytest | |||
from functools import reduce | |||
from fastNLP.core.callbacks.callback_event import Event, Filter | |||
class TestFilter: | |||
def test_every_filter(self): | |||
# every = 10 | |||
@Filter(every=10) | |||
def _fn(data): | |||
return data | |||
_res = [] | |||
for i in range(100): | |||
cu_res = _fn(i) | |||
if cu_res is not None: | |||
_res.append(cu_res) | |||
assert _res == [w-1 for w in range(10, 101, 10)] | |||
# every = 1 | |||
@Filter(every=1) | |||
def _fn(data): | |||
return data | |||
_res = [] | |||
for i in range(100): | |||
cu_res = _fn(i) | |||
if cu_res is not None: | |||
_res.append(cu_res) | |||
assert _res == list(range(100)) | |||
def test_once_filter(self): | |||
# once = 10 | |||
@Filter(once=10) | |||
def _fn(data): | |||
return data | |||
_res = [] | |||
for i in range(100): | |||
cu_res = _fn(i) | |||
if cu_res is not None: | |||
_res.append(cu_res) | |||
assert _res == [9] | |||
def test_extract_filter_from_fn(self): | |||
@Filter(every=10) | |||
def _fn(data): | |||
return data | |||
_filter_num_called = [] | |||
_filter_num_executed = [] | |||
for i in range(100): | |||
cu_res = _fn(i) | |||
_filter = _fn.__fastNLP_filter__ | |||
_filter_num_called.append(_filter.num_called) | |||
_filter_num_executed.append(_filter.num_executed) | |||
assert _filter_num_called == list(range(1, 101)) | |||
assert _filter_num_executed == [0]*9 + reduce(lambda x, y: x+y, [[w]*10 for w in range(1, 10)]) + [10] | |||
def _fn(data): | |||
return data | |||
assert not hasattr(_fn, "__fastNLP_filter__") | |||
def test_filter_state_dict(self): | |||
# every = 10 | |||
@Filter(every=10) | |||
def _fn(data): | |||
return data | |||
_res = [] | |||
for i in range(50): | |||
cu_res = _fn(i) | |||
if cu_res is not None: | |||
_res.append(cu_res) | |||
assert _res == [w - 1 for w in range(10, 51, 10)] | |||
# 保存状态 | |||
state = _fn.__fastNLP_filter__.state_dict() | |||
# 加载状态 | |||
_fn.__fastNLP_filter__.load_state_dict(state) | |||
_res = [] | |||
for i in range(50, 100): | |||
cu_res = _fn(i) | |||
if cu_res is not None: | |||
_res.append(cu_res) | |||
assert _res == [w - 1 for w in range(60, 101, 10)] | |||
@pytest.mark.torch | |||
def test_filter_fn_torch(): | |||
from torch.optim import SGD | |||
from torch.utils.data import DataLoader | |||
from fastNLP.core.controllers.trainer import Trainer | |||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification | |||
model = TorchNormalModel_Classification_1(num_labels=3, feature_dimension=10) | |||
optimizer = SGD(model.parameters(), lr=0.0001) | |||
dataset = TorchNormalDataset_Classification(num_labels=3, feature_dimension=10) | |||
dataloader = DataLoader(dataset=dataset, batch_size=4) | |||
trainer = Trainer(model=model, driver="torch", device="cpu", train_dataloader=dataloader, optimizers=optimizer) | |||
def filter_fn(filter, trainer): | |||
if trainer.__heihei_test__ == 10: | |||
return True | |||
return False | |||
@Filter(filter_fn=filter_fn) | |||
def _fn(trainer, data): | |||
return data | |||
_res = [] | |||
for i in range(100): | |||
trainer.__heihei_test__ = i | |||
cu_res = _fn(trainer, i) | |||
if cu_res is not None: | |||
_res.append(cu_res) | |||
assert _res == [10] | |||
class TestCallbackEvents: | |||
def test_every(self): | |||
# 这里是什么样的事件是不影响的,因为我们是与 Trainer 拆分开了进行测试; | |||
event_state = Event.on_train_begin() # 什么都不输入是应当默认 every=1; | |||
@Filter(every=event_state.every, once=event_state.once, filter_fn=event_state.filter_fn) | |||
def _fn(data): | |||
return data | |||
_res = [] | |||
for i in range(100): | |||
cu_res = _fn(i) | |||
if cu_res is not None: | |||
_res.append(cu_res) | |||
assert _res == list(range(100)) | |||
event_state = Event.on_train_begin(every=10) | |||
@Filter(every=event_state.every, once=event_state.once, filter_fn=event_state.filter_fn) | |||
def _fn(data): | |||
return data | |||
_res = [] | |||
for i in range(100): | |||
cu_res = _fn(i) | |||
if cu_res is not None: | |||
_res.append(cu_res) | |||
assert _res == [w - 1 for w in range(10, 101, 10)] | |||
def test_once(self): | |||
event_state = Event.on_train_begin(once=10) | |||
@Filter(once=event_state.once) | |||
def _fn(data): | |||
return data | |||
_res = [] | |||
for i in range(100): | |||
cu_res = _fn(i) | |||
if cu_res is not None: | |||
_res.append(cu_res) | |||
assert _res == [9] | |||
@pytest.mark.torch | |||
def test_callback_events_torch(): | |||
from torch.optim import SGD | |||
from torch.utils.data import DataLoader | |||
from fastNLP.core.controllers.trainer import Trainer | |||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification | |||
model = TorchNormalModel_Classification_1(num_labels=3, feature_dimension=10) | |||
optimizer = SGD(model.parameters(), lr=0.0001) | |||
dataset = TorchNormalDataset_Classification(num_labels=3, feature_dimension=10) | |||
dataloader = DataLoader(dataset=dataset, batch_size=4) | |||
trainer = Trainer(model=model, driver="torch", device="cpu", train_dataloader=dataloader, optimizers=optimizer) | |||
def filter_fn(filter, trainer): | |||
if trainer.__heihei_test__ == 10: | |||
return True | |||
return False | |||
event_state = Event.on_train_begin(filter_fn=filter_fn) | |||
@Filter(filter_fn=event_state.filter_fn) | |||
def _fn(trainer, data): | |||
return data | |||
_res = [] | |||
for i in range(100): | |||
trainer.__heihei_test__ = i | |||
cu_res = _fn(trainer, i) | |||
if cu_res is not None: | |||
_res.append(cu_res) | |||
assert _res == [10] | |||
@@ -1,157 +0,0 @@ | |||
import pytest | |||
from functools import reduce | |||
from fastNLP.core.callbacks.callback_events import Events, Filter | |||
class TestFilter: | |||
def test_params_check(self): | |||
# 顺利通过 | |||
_filter1 = Filter(every=10) | |||
_filter2 = Filter(once=10) | |||
_filter3 = Filter(filter_fn=lambda: None) | |||
# 触发 ValueError | |||
with pytest.raises(ValueError) as e: | |||
_filter4 = Filter() | |||
exec_msg = e.value.args[0] | |||
assert exec_msg == "If you mean your decorated function should be called every time, you do not need this filter." | |||
# 触发 ValueError | |||
with pytest.raises(ValueError) as e: | |||
_filter5 = Filter(every=10, once=10) | |||
exec_msg = e.value.args[0] | |||
assert exec_msg == "These three values should be only set one." | |||
# 触发 TypeError | |||
with pytest.raises(ValueError) as e: | |||
_filter6 = Filter(every="heihei") | |||
exec_msg = e.value.args[0] | |||
assert exec_msg == "Argument every should be integer and greater than zero" | |||
# 触发 TypeError | |||
with pytest.raises(ValueError) as e: | |||
_filter7 = Filter(once="heihei") | |||
exec_msg = e.value.args[0] | |||
assert exec_msg == "Argument once should be integer and positive" | |||
# 触发 TypeError | |||
with pytest.raises(TypeError) as e: | |||
_filter7 = Filter(filter_fn="heihei") | |||
exec_msg = e.value.args[0] | |||
assert exec_msg == "Argument event_filter should be a callable" | |||
def test_every_filter(self): | |||
# every = 10 | |||
@Filter(every=10) | |||
def _fn(data): | |||
return data | |||
_res = [] | |||
for i in range(100): | |||
cu_res = _fn(i) | |||
if cu_res is not None: | |||
_res.append(cu_res) | |||
assert _res == [w-1 for w in range(10, 101, 10)] | |||
# every = 1 | |||
@Filter(every=1) | |||
def _fn(data): | |||
return data | |||
_res = [] | |||
for i in range(100): | |||
cu_res = _fn(i) | |||
if cu_res is not None: | |||
_res.append(cu_res) | |||
assert _res == list(range(100)) | |||
def test_once_filter(self): | |||
# once = 10 | |||
@Filter(once=10) | |||
def _fn(data): | |||
return data | |||
_res = [] | |||
for i in range(100): | |||
cu_res = _fn(i) | |||
if cu_res is not None: | |||
_res.append(cu_res) | |||
assert _res == [9] | |||
def test_filter_fn(self): | |||
from torch.optim import SGD | |||
from torch.utils.data import DataLoader | |||
from fastNLP.core.controllers.trainer import Trainer | |||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification | |||
model = TorchNormalModel_Classification_1(num_labels=3, feature_dimension=10) | |||
optimizer = SGD(model.parameters(), lr=0.0001) | |||
dataset = TorchNormalDataset_Classification(num_labels=3, feature_dimension=10) | |||
dataloader = DataLoader(dataset=dataset, batch_size=4) | |||
trainer = Trainer(model=model, driver="torch", device="cpu", train_dataloader=dataloader, optimizers=optimizer) | |||
def filter_fn(filter, trainer): | |||
if trainer.__heihei_test__ == 10: | |||
return True | |||
return False | |||
@Filter(filter_fn=filter_fn) | |||
def _fn(trainer, data): | |||
return data | |||
_res = [] | |||
for i in range(100): | |||
trainer.__heihei_test__ = i | |||
cu_res = _fn(trainer, i) | |||
if cu_res is not None: | |||
_res.append(cu_res) | |||
assert _res == [10] | |||
def test_extract_filter_from_fn(self): | |||
@Filter(every=10) | |||
def _fn(data): | |||
return data | |||
_filter_num_called = [] | |||
_filter_num_executed = [] | |||
for i in range(100): | |||
cu_res = _fn(i) | |||
_filter = _fn.__fastNLP_filter__ | |||
_filter_num_called.append(_filter.num_called) | |||
_filter_num_executed.append(_filter.num_executed) | |||
assert _filter_num_called == list(range(1, 101)) | |||
assert _filter_num_executed == [0]*9 + reduce(lambda x, y: x+y, [[w]*10 for w in range(1, 10)]) + [10] | |||
def _fn(data): | |||
return data | |||
assert not hasattr(_fn, "__fastNLP_filter__") | |||
def test_filter_state_dict(self): | |||
# every = 10 | |||
@Filter(every=10) | |||
def _fn(data): | |||
return data | |||
_res = [] | |||
for i in range(50): | |||
cu_res = _fn(i) | |||
if cu_res is not None: | |||
_res.append(cu_res) | |||
assert _res == [w - 1 for w in range(10, 51, 10)] | |||
# 保存状态 | |||
state = _fn.__fastNLP_filter__.state_dict() | |||
# 加载状态 | |||
_fn.__fastNLP_filter__.load_state_dict(state) | |||
_res = [] | |||
for i in range(50, 100): | |||
cu_res = _fn(i) | |||
if cu_res is not None: | |||
_res.append(cu_res) | |||
assert _res == [w - 1 for w in range(60, 101, 10)] | |||
@@ -2,9 +2,6 @@ import os | |||
import pytest | |||
from typing import Any | |||
from dataclasses import dataclass | |||
from torch.utils.data import DataLoader | |||
from torch.optim import SGD | |||
import torch.distributed as dist | |||
from pathlib import Path | |||
import re | |||
import time | |||
@@ -20,6 +17,11 @@ from tests.helpers.datasets.torch_data import TorchArgMaxDataset | |||
from torchmetrics import Accuracy | |||
from fastNLP.core.log import logger | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
from torch.utils.data import DataLoader | |||
from torch.optim import SGD | |||
import torch.distributed as dist | |||
@dataclass | |||
class ArgMaxDatasetConfig: | |||
@@ -216,9 +218,9 @@ def test_model_checkpoint_callback_2( | |||
path = Path.cwd().joinpath("test_model_checkpoint") | |||
path.mkdir(exist_ok=True, parents=True) | |||
from fastNLP.core.callbacks.callback_events import Events | |||
from fastNLP.core.callbacks.callback_event import Event | |||
@Trainer.on(Events.on_train_epoch_end) | |||
@Trainer.on(Event.on_train_epoch_end()) | |||
def raise_exception(trainer): | |||
if trainer.driver.get_local_rank() == 0 and trainer.cur_epoch_idx == 4: | |||
raise NotImplementedError | |||
@@ -550,7 +552,7 @@ def test_trainer_checkpoint_callback_2( | |||
if version == 0: | |||
callbacks = [ | |||
TrainerCheckpointCallback( | |||
CheckpointCallback( | |||
monitor="acc", | |||
folder=path, | |||
every_n_epochs=None, | |||
@@ -558,12 +560,13 @@ def test_trainer_checkpoint_callback_2( | |||
topk=None, | |||
last=False, | |||
on_exception=None, | |||
model_save_fn=model_save_fn | |||
model_save_fn=model_save_fn, | |||
save_object="trainer" | |||
) | |||
] | |||
elif version == 1: | |||
callbacks = [ | |||
TrainerCheckpointCallback( | |||
CheckpointCallback( | |||
monitor="acc", | |||
folder=path, | |||
every_n_epochs=None, | |||
@@ -571,7 +574,8 @@ def test_trainer_checkpoint_callback_2( | |||
topk=1, | |||
last=True, | |||
on_exception=None, | |||
model_save_fn=model_save_fn | |||
model_save_fn=model_save_fn, | |||
save_object="trainer" | |||
) | |||
] | |||
@@ -12,9 +12,7 @@ import os | |||
import pytest | |||
from typing import Any | |||
from dataclasses import dataclass | |||
from torch.utils.data import DataLoader | |||
from torch.optim import SGD | |||
import torch.distributed as dist | |||
from pathlib import Path | |||
import re | |||
@@ -29,7 +27,11 @@ from torchmetrics import Accuracy | |||
from fastNLP.core.metrics import Metric | |||
from fastNLP.core.log import logger | |||
from fastNLP.core.callbacks import MoreEvaluateCallback | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
from torch.utils.data import DataLoader | |||
from torch.optim import SGD | |||
import torch.distributed as dist | |||
@dataclass | |||
class ArgMaxDatasetConfig: | |||
@@ -17,12 +17,13 @@ def test_get_element_shape_dtype(): | |||
@pytest.mark.parametrize('backend', ['raw', None, 'numpy', 'torch', 'jittor', 'paddle']) | |||
@pytest.mark.torch | |||
@pytest.mark.paddle | |||
@pytest.mark.jittor | |||
def test_get_padder_run(backend): | |||
if not _NEED_IMPORT_TORCH and backend == 'torch': | |||
pytest.skip("No torch") | |||
if not _NEED_IMPORT_PADDLE and backend == 'paddle': | |||
pytest.skip("No paddle") | |||
if not _NEED_IMPORT_PADDLE and backend == 'jittor': | |||
if not _NEED_IMPORT_JITTOR and backend == 'jittor': | |||
pytest.skip("No jittor") | |||
batch_field = [1, 2, 3] | |||
padder = get_padder(batch_field, pad_val=0, backend=backend, dtype=int, field_name='test') | |||
@@ -66,6 +67,13 @@ def test_raw_padder(): | |||
pad_batch = padder(batch_field) | |||
assert np.shape(pad_batch) == (3, 3, 2) | |||
batch_field = [np.ones((3,3)), np.ones((2,3)), np.ones((1,0))] | |||
padder = get_padder(batch_field, pad_val=0, backend=backend, dtype=int, field_name='test') | |||
pad_batch = padder(batch_field) | |||
assert isinstance(pad_batch, list) | |||
assert np.shape(pad_batch) == (3, 3, 3) | |||
assert (pad_batch == np.zeros(np.shape(pad_batch))).sum()==12 | |||
def test_numpy_padder(): | |||
backend = 'numpy' | |||
@@ -140,3 +148,18 @@ def test_torch_padder(): | |||
with pytest.raises(InconsistencyError): | |||
padder = get_padder(batch_field, pad_val=0, backend=backend, dtype=int, field_name='test') | |||
# 可以是 numpy.ndarray | |||
batch_field = [np.ones((3,3)), np.ones((2,3)), np.ones((1,0))] | |||
padder = get_padder(batch_field, pad_val=0, backend=backend, dtype=int, field_name='test') | |||
pad_batch = padder(batch_field) | |||
assert isinstance(pad_batch, target_type) | |||
assert pad_batch.shape == (3, 3, 3) | |||
assert (pad_batch == torch.zeros(pad_batch.shape)).sum()==12 | |||
# 测试 to numpy | |||
batch_field = [torch.ones((3,3)), torch.ones((2,3)), torch.ones((1,0))] | |||
padder = get_padder(batch_field, pad_val=0, backend='numpy', dtype=int, field_name='test') | |||
pad_batch = padder(batch_field) | |||
assert isinstance(pad_batch, np.ndarray) | |||
assert np.shape(pad_batch) == (3, 3, 3) | |||
assert (pad_batch == np.zeros(np.shape(pad_batch))).sum()==12 |
@@ -1,7 +1,7 @@ | |||
import numpy as np | |||
import pytest | |||
from fastNLP.core.collators.padders.paddle_padder import paddleTensorPadder, paddleSequencePadder, paddleNumberPadder | |||
from fastNLP.core.collators.padders.paddle_padder import PaddleTensorPadder, PaddleSequencePadder, PaddleNumberPadder | |||
from fastNLP.core.collators.padders.exceptions import DtypeError | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
@@ -10,9 +10,9 @@ if _NEED_IMPORT_PADDLE: | |||
@pytest.mark.paddle | |||
class TestpaddleNumberPadder: | |||
class TestPaddleNumberPadder: | |||
def test_run(self): | |||
padder = paddleNumberPadder(ele_dtype=int, dtype=int, pad_val=-1) | |||
padder = PaddleNumberPadder(ele_dtype=int, dtype=int, pad_val=-1) | |||
a = [1, 2, 3] | |||
t_a = padder(a) | |||
assert isinstance(t_a, paddle.Tensor) | |||
@@ -20,9 +20,9 @@ class TestpaddleNumberPadder: | |||
@pytest.mark.paddle | |||
class TestpaddleSequencePadder: | |||
class TestPaddleSequencePadder: | |||
def test_run(self): | |||
padder = paddleSequencePadder(ele_dtype=int, dtype=int, pad_val=-1) | |||
padder = PaddleSequencePadder(ele_dtype=int, dtype=int, pad_val=-1) | |||
a = [[1, 2, 3], [3]] | |||
a = padder(a) | |||
shape = a.shape | |||
@@ -32,20 +32,20 @@ class TestpaddleSequencePadder: | |||
assert (a == b).sum().item() == shape[0]*shape[1] | |||
def test_dtype_check(self): | |||
padder = paddleSequencePadder(ele_dtype=np.zeros(3, dtype=np.int32).dtype, dtype=int, pad_val=-1) | |||
padder = PaddleSequencePadder(ele_dtype=np.zeros(3, dtype=np.int32).dtype, dtype=int, pad_val=-1) | |||
with pytest.raises(DtypeError): | |||
padder = paddleSequencePadder(ele_dtype=str, dtype=int, pad_val=-1) | |||
padder = paddleSequencePadder(ele_dtype='int64', dtype=int, pad_val=-1) | |||
padder = paddleSequencePadder(ele_dtype=np.int32, dtype=None, pad_val=-1) | |||
padder = PaddleSequencePadder(ele_dtype=str, dtype=int, pad_val=-1) | |||
padder = PaddleSequencePadder(ele_dtype='int64', dtype=int, pad_val=-1) | |||
padder = PaddleSequencePadder(ele_dtype=np.int32, dtype=None, pad_val=-1) | |||
a = padder([[1], [2, 322]]) | |||
# assert (a>67).sum()==0 # 因为int8的范围为-67 - 66 | |||
padder = paddleSequencePadder(ele_dtype=np.zeros(2).dtype, dtype=None, pad_val=-1) | |||
padder = PaddleSequencePadder(ele_dtype=np.zeros(2).dtype, dtype=None, pad_val=-1) | |||
@pytest.mark.paddle | |||
class TestpaddleTensorPadder: | |||
class TestPaddleTensorPadder: | |||
def test_run(self): | |||
padder = paddleTensorPadder(ele_dtype=paddle.zeros((3,)).dtype, dtype=paddle.zeros((3,)).dtype, pad_val=-1) | |||
padder = PaddleTensorPadder(ele_dtype=paddle.zeros((3,)).dtype, dtype=paddle.zeros((3,)).dtype, pad_val=-1) | |||
a = [paddle.zeros((3,)), paddle.zeros((2,))] | |||
a = padder(a) | |||
shape = a.shape | |||
@@ -74,7 +74,7 @@ class TestpaddleTensorPadder: | |||
[[0, -1], [-1, -1], [-1, -1]]]) | |||
assert (a == b).sum().item() == shape[0]*shape[1]*shape[2] | |||
padder = paddleTensorPadder(ele_dtype=paddle.zeros((3, )).dtype, dtype=paddle.zeros((3, )).dtype, pad_val=-1) | |||
padder = PaddleTensorPadder(ele_dtype=paddle.zeros((3, )).dtype, dtype=paddle.zeros((3, )).dtype, pad_val=-1) | |||
a = [paddle.zeros((3, 2)), paddle.zeros((2, 2))] | |||
a = padder(a) | |||
shape = a.shape | |||
@@ -85,7 +85,7 @@ class TestpaddleTensorPadder: | |||
]) | |||
assert (a == b).sum().item() == shape[0]*shape[1]*shape[2] | |||
padder = paddleTensorPadder(ele_dtype=paddle.zeros((3, 2)).dtype, dtype=None, pad_val=-1) | |||
padder = PaddleTensorPadder(ele_dtype=paddle.zeros((3, 2)).dtype, dtype=None, pad_val=-1) | |||
a = [np.zeros((3, 2), dtype=np.float32), np.zeros((2, 2), dtype=np.float32)] | |||
a = padder(a) | |||
shape = a.shape | |||
@@ -96,11 +96,11 @@ class TestpaddleTensorPadder: | |||
assert (a == b).sum().item() == shape[0]*shape[1]*shape[2] | |||
def test_dtype_check(self): | |||
padder = paddleTensorPadder(ele_dtype=np.zeros(3, dtype=np.int8).dtype, dtype=int, pad_val=-1) | |||
padder = PaddleTensorPadder(ele_dtype=np.zeros(3, dtype=np.int8).dtype, dtype=int, pad_val=-1) | |||
with pytest.raises(DtypeError): | |||
padder = paddleTensorPadder(ele_dtype=str, dtype=int, pad_val=-1) | |||
padder = paddleTensorPadder(ele_dtype='int64', dtype=int, pad_val=-1) | |||
padder = paddleTensorPadder(ele_dtype=int, dtype='int64', pad_val=-1) | |||
padder = PaddleTensorPadder(ele_dtype=str, dtype=int, pad_val=-1) | |||
padder = PaddleTensorPadder(ele_dtype='int64', dtype=int, pad_val=-1) | |||
padder = PaddleTensorPadder(ele_dtype=int, dtype='int64', pad_val=-1) | |||
def test_v1(self): | |||
print(paddle.zeros((3, )).dtype) |
@@ -23,7 +23,6 @@ class TestRawSequencePadder: | |||
assert (a == b).sum().item() == shape[0]*shape[1] | |||
def test_dtype_check(self): | |||
with pytest.raises(DtypeError): | |||
padder = RawSequencePadder(pad_val=-1, ele_dtype=np.zeros(3, dtype=np.int8).dtype, dtype=int) | |||
padder = RawSequencePadder(pad_val=-1, ele_dtype=np.zeros(3, dtype=np.int8).dtype, dtype=int) | |||
with pytest.raises(DtypeError): | |||
padder = RawSequencePadder(pad_val=-1, ele_dtype=str, dtype=int) |
@@ -1,81 +1,293 @@ | |||
import numpy as np | |||
import pytest | |||
from fastNLP.core.collators import AutoCollator | |||
from fastNLP.core.collators.collator import _MultiCollator | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH, _NEED_IMPORT_PADDLE, _NEED_IMPORT_JITTOR | |||
from fastNLP.core.collators.collator import Collator | |||
def _assert_equal(d1, d2): | |||
try: | |||
if 'torch' in str(type(d1)): | |||
if 'float64' in str(d2.dtype): | |||
print(d2.dtype) | |||
assert (d1 == d2).all().item() | |||
else: | |||
assert all(d1 == d2) | |||
except TypeError: | |||
assert d1 == d2 | |||
except ValueError: | |||
assert (d1 == d2).all() | |||
def findDictDiff(d1, d2, path=""): | |||
for k in d1: | |||
if k in d2: | |||
if isinstance(d1[k], dict): | |||
findDictDiff(d1[k], d2[k], "%s -> %s" % (path, k) if path else k) | |||
else: | |||
_assert_equal(d1[k], d2[k]) | |||
else: | |||
raise RuntimeError("%s%s as key not in d2\n" % ("%s: " % path if path else "", k)) | |||
def findListDiff(d1, d2): | |||
assert len(d1)==len(d2) | |||
for _d1, _d2 in zip(d1, d2): | |||
if isinstance(_d1, list): | |||
findListDiff(_d1, _d2) | |||
else: | |||
_assert_equal(_d1, _d2) | |||
class TestCollator: | |||
@pytest.mark.parametrize('as_numpy', [True, False]) | |||
def test_auto_collator(self, as_numpy): | |||
""" | |||
测试auto_collator的auto_pad功能 | |||
:param as_numpy: | |||
:return: | |||
""" | |||
dataset = DataSet({'x': [[1, 2], [0, 1, 2, 3], [3], [9, 0, 10, 1, 5]] * 100, | |||
'y': [0, 1, 1, 0] * 100}) | |||
collator = AutoCollator(as_numpy=as_numpy) | |||
collator.set_input('x', 'y') | |||
bucket_data = [] | |||
data = [] | |||
for i in range(len(dataset)): | |||
data.append(dataset[i]) | |||
if len(data) == 40: | |||
bucket_data.append(data) | |||
data = [] | |||
results = [] | |||
for bucket in bucket_data: | |||
res = collator(bucket) | |||
assert res['x'].shape == (40, 5) | |||
assert res['y'].shape == (40,) | |||
results.append(res) | |||
def test_auto_collator_v1(self): | |||
""" | |||
测试auto_collator的set_pad_val和set_pad_val功能 | |||
:return: | |||
""" | |||
dataset = DataSet({'x': [[1, 2], [0, 1, 2, 3], [3], [9, 0, 10, 1, 5]] * 100, | |||
'y': [0, 1, 1, 0] * 100}) | |||
collator = AutoCollator(as_numpy=False) | |||
collator.set_input('x') | |||
collator.set_pad_val('x', val=-1) | |||
collator.set_as_numpy(True) | |||
bucket_data = [] | |||
data = [] | |||
for i in range(len(dataset)): | |||
data.append(dataset[i]) | |||
if len(data) == 40: | |||
bucket_data.append(data) | |||
data = [] | |||
for bucket in bucket_data: | |||
res = collator(bucket) | |||
print(res) | |||
def test_multicollator(self): | |||
""" | |||
测试multicollator功能 | |||
:return: | |||
""" | |||
dataset = DataSet({'x': [[1, 2], [0, 1, 2, 3], [3], [9, 0, 10, 1, 5]] * 100, | |||
'y': [0, 1, 1, 0] * 100}) | |||
collator = AutoCollator(as_numpy=False) | |||
multi_collator = _MultiCollator(collator) | |||
multi_collator.set_as_numpy(as_numpy=True) | |||
multi_collator.set_pad_val('x', val=-1) | |||
multi_collator.set_input('x') | |||
bucket_data = [] | |||
data = [] | |||
for i in range(len(dataset)): | |||
data.append(dataset[i]) | |||
if len(data) == 40: | |||
bucket_data.append(data) | |||
data = [] | |||
for bucket in bucket_data: | |||
res = multi_collator(bucket) | |||
print(res) | |||
@pytest.mark.torch | |||
def test_run(self): | |||
dict_batch = [{ | |||
'str': '1', | |||
'lst_str': ['1'], | |||
'int': 1, | |||
'lst_int': [1], | |||
'nest_lst_int': [[1]], | |||
'float': 1.1, | |||
'lst_float': [1.1], | |||
'bool': True, | |||
'numpy': np.ones(1), | |||
'dict': {'1': '1'}, | |||
'set': {'1'}, | |||
'nested_dict': {'a': 1, 'b':[1, 2]} | |||
}, | |||
{ | |||
'str': '2', | |||
'lst_str': ['2', '2'], | |||
'int': 2, | |||
'lst_int': [1, 2], | |||
'nest_lst_int': [[1], [1, 2]], | |||
'float': 2.1, | |||
'lst_float': [2.1], | |||
'bool': False, | |||
'numpy': np.zeros(1), | |||
'dict': {'1': '2'}, | |||
'set': {'2'}, | |||
'nested_dict': {'a': 2, 'b': [1, 2]} | |||
} | |||
] | |||
list_batch = [['1', ['1'], 1, [1], [[1]], 1.1, [1.1], True, np.ones(1), {'1': '1'}, {'1'}], | |||
['2', ['2', '2'], 2, [2, 2], [[1], [1, 2]], 2.1, [2.1], False, np.ones(2), {'2': '2'}, {'2'}]] | |||
raw_pad_batch = {'str': ['1', '2'], 'lst_str': [['1'], ['2', '2']], 'int': [1, 2], 'lst_int': [[1, 0], [1, 2]], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], 'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'a': [1, 2], 'b': [[1, 2], [1, 2]]}} | |||
collator = Collator(backend='raw') | |||
assert raw_pad_batch == collator(dict_batch) | |||
collator = Collator(backend='raw') | |||
raw_pad_lst = [['1', '2'], [['1'], ['2', '2']], [1, 2], [[1, 0], [2, 2]], [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], | |||
[1.1, 2.1], [[1.1], [2.1]], [True, False], [np.ones(1), np.ones(2)], [{'1': '1'}, {'2': '2'}], | |||
[{'1'}, {'2'}]] | |||
findListDiff(raw_pad_lst, collator(list_batch)) | |||
collator = Collator(backend='numpy') | |||
numpy_pad_batch = {'str': ['1', '2'], 'lst_str': [['1'], ['2', '2']], 'int': np.array([1, 2]), 'lst_int': np.array([[1, 0], [1, 2]]), | |||
'nest_lst_int': np.array([[[1, 0], [0, 0]], [[1, 0], [1, 2]]]), 'float': np.array([1.1, 2.1]), | |||
'lst_float': np.array([[1.1], [2.1]]), 'bool': np.array([True, False]), 'numpy': np.array([[1], [0]]), | |||
'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'a': np.array([1, 2]), | |||
'b': np.array([[1, 2], [1, 2]])}} | |||
findDictDiff(numpy_pad_batch, collator(dict_batch)) | |||
collator = Collator(backend='numpy') | |||
numpy_pad_lst = [['1', '2'], [['1'], ['2', '2']], np.array([1, 2]), np.array([[1, 0], [2, 2]]), | |||
np.array([[[1, 0], [0, 0]], [[1, 0], [1, 2]]]), | |||
np.array([1.1, 2.1]), np.array([[1.1], [2.1]]), np.array([True, False]), | |||
np.array([[1, 0], [1, 1]]), [{'1': '1'}, {'2': '2'}], | |||
[{'1'}, {'2'}]] | |||
findListDiff(numpy_pad_lst, collator(list_batch)) | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
collator = Collator(backend='torch') | |||
numpy_pad_batch = {'str': ['1', '2'], 'lst_str': [['1'], ['2', '2']], 'int': torch.LongTensor([1, 2]), | |||
'lst_int': torch.LongTensor([[1, 0], [1, 2]]), | |||
'nest_lst_int': torch.LongTensor([[[1, 0], [0, 0]], [[1, 0], [1, 2]]]), | |||
'float': torch.FloatTensor([1.1, 2.1]), | |||
'lst_float': torch.FloatTensor([[1.1], [2.1]]), 'bool': torch.BoolTensor([True, False]), | |||
'numpy': torch.FloatTensor([[1], [0]]), | |||
'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'a': torch.LongTensor([1, 2]), | |||
'b': torch.LongTensor( | |||
[[1, 2], [1, 2]])}} | |||
findDictDiff(numpy_pad_batch, collator(dict_batch)) | |||
collator = Collator(backend='torch') | |||
torch_pad_lst = [['1', '2'], [['1'], ['2', '2']], torch.LongTensor([1, 2]), torch.LongTensor([[1, 0], [2, 2]]), | |||
torch.LongTensor([[[1, 0], [0, 0]], [[1, 0], [1, 2]]]), | |||
torch.FloatTensor([1.1, 2.1]), torch.FloatTensor([[1.1], [2.1]]), torch.BoolTensor([True, False]), | |||
torch.LongTensor([[1, 0], [1, 1]]), [{'1': '1'}, {'2': '2'}], | |||
[{'1'}, {'2'}]] | |||
findListDiff(torch_pad_lst, collator(list_batch)) | |||
def test_pad(self): | |||
dict_batch = [{ | |||
'str': '1', | |||
'lst_str': ['1'], | |||
'int': 1, | |||
'lst_int': [1], | |||
'nest_lst_int': [[1]], | |||
'float': 1.1, | |||
'lst_float': [1.1], | |||
'bool': True, | |||
'numpy': np.ones(1), | |||
'dict': {'1': '1'}, | |||
'set': {'1'}, | |||
'nested_dict': {'a': 1, 'b':[1, 2]} | |||
}, | |||
{ | |||
'str': '2', | |||
'lst_str': ['2', '2'], | |||
'int': 2, | |||
'lst_int': [1, 2], | |||
'nest_lst_int': [[1], [1, 2]], | |||
'float': 2.1, | |||
'lst_float': [2.1], | |||
'bool': False, | |||
'numpy': np.zeros(1), | |||
'dict': {'1': '2'}, | |||
'set': {'2'}, | |||
'nested_dict': {'a': 2, 'b': [1, 2]} | |||
} | |||
] | |||
raw_pad_batch = {'str': ['1', '2'], 'lst_str': [['1'], ['2', '2']], 'int': [1, 2], 'lst_int': [[1, 0], [1, 2]], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], 'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'a': [1, 2], 'b': [[1, 2], [1, 2]]}} | |||
# 测试 ignore | |||
collator = Collator(backend='raw') | |||
collator.set_ignore('str', 'int', 'lst_int', ('nested_dict', 'a')) | |||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], 'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'b': [[1, 2], [1, 2]]}} | |||
findDictDiff(raw_pad_batch, collator(dict_batch)) | |||
# 测试 set_pad | |||
collator = Collator(backend='raw') | |||
collator.set_pad('str', pad_val=1) | |||
with pytest.raises(BaseException): | |||
collator(dict_batch) | |||
# 测试设置 pad 值 | |||
collator = Collator(backend='raw') | |||
collator.set_pad('nest_lst_int', pad_val=100) | |||
collator.set_ignore('str', 'int', 'lst_int', ('nested_dict','a')) | |||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 100], [100, 100]], [[1, 100], [1, 2]]], | |||
'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'b': [[1, 2], [1, 2]]}} | |||
findDictDiff(raw_pad_batch, collator(dict_batch)) | |||
# 设置 backend 和 type | |||
collator.set_pad('float', pad_val=100, backend='numpy', dtype=int) | |||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 100], [100, 100]], [[1, 100], [1, 2]]], | |||
'float': np.array([1, 2]), 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'b': [[1, 2], [1, 2]]}} | |||
findDictDiff(raw_pad_batch, collator(dict_batch)) | |||
# raw_pad_lst = [['1', '2'], [['1'], ['2', '2']], [1, 2], [[1, 0], [2, 2]], [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], | |||
# [1.1, 2.1], [[1.1], [2.1]], [True, False], [np.ones(1), np.ones(2)], [{'1': '1'}, {'2': '2'}], | |||
# [{'1'}, {'2'}]] | |||
list_batch = [['1', ['1'], 1, [1], [[1]], 1.1, [1.1], True, np.ones(1), {'1': '1'}, {'1'}], | |||
['2', ['2', '2'], 2, [2, 2], [[1], [1, 2]], 2.1, [2.1], False, np.ones(2), {'2': '2'}, {'2'}]] | |||
collator = Collator(backend='raw') | |||
collator.set_ignore('_0', '_3', '_1') | |||
collator.set_pad('_4', pad_val=None) | |||
raw_pad_lst = [[1, 2], [[[1]], [[1], [1, 2]]], | |||
[1.1, 2.1], [[1.1], [2.1]], [True, False], [np.ones(1), np.ones(2)], [{'1': '1'}, {'2': '2'}], | |||
[{'1'}, {'2'}]] | |||
findListDiff(raw_pad_lst, collator(list_batch)) | |||
collator = Collator(backend='raw') | |||
collator.set_pad('_0', pad_val=1) | |||
with pytest.raises(BaseException): | |||
collator(dict_batch) | |||
list_batch = [['1', ['1'], 1, [1], [[1]], 1.1, [1.1], True, np.ones(1), {'1': '1'}, {'1'}], | |||
['2', ['2', '2'], 2, [2, 2], [[1], [1, 2]], 2.1, [2.1], False, np.ones(2), {'2': '2'}, {'2'}]] | |||
collator = Collator(backend='raw') | |||
collator.set_ignore('_0', '_3', '_1') | |||
collator.set_pad('_2', backend='numpy') | |||
collator.set_pad('_4', backend='numpy', pad_val=100) | |||
raw_pad_lst = [np.array([1, 2]), np.array([[[1, 100], [100, 100]], [[1, 100], [1, 2]]]), | |||
[1.1, 2.1], [[1.1], [2.1]], [True, False], [np.ones(1), np.ones(2)], [{'1': '1'}, {'2': '2'}], | |||
[{'1'}, {'2'}]] | |||
findListDiff(raw_pad_lst, collator(list_batch)) | |||
# _single | |||
collator = Collator() | |||
collator.set_pad('_single') | |||
findListDiff(list_batch, collator(list_batch)) | |||
def test_nest_ignore(self): | |||
dict_batch = [{ | |||
'str': '1', | |||
'lst_str': ['1'], | |||
'int': 1, | |||
'lst_int': [1], | |||
'nest_lst_int': [[1]], | |||
'float': 1.1, | |||
'lst_float': [1.1], | |||
'bool': True, | |||
'numpy': np.ones(1), | |||
'dict': {'1': '1'}, | |||
'set': {'1'}, | |||
'nested_dict': {'int': 1, 'lst_int':[1, 2], 'c': {'int': 1}} | |||
}, | |||
{ | |||
'str': '2', | |||
'lst_str': ['2', '2'], | |||
'int': 2, | |||
'lst_int': [1, 2], | |||
'nest_lst_int': [[1], [1, 2]], | |||
'float': 2.1, | |||
'lst_float': [2.1], | |||
'bool': False, | |||
'numpy': np.zeros(1), | |||
'dict': {'1': '2'}, | |||
'set': {'2'}, | |||
'nested_dict': {'int': 1, 'lst_int': [1, 2], 'c': {'int': 1}} | |||
} | |||
] | |||
# 测试 ignore | |||
collator = Collator(backend='raw') | |||
collator.set_ignore('str', 'int', 'lst_int', ('nested_dict', 'int')) | |||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], | |||
'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], | |||
'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, | |||
'set': [{'1'}, {'2'}], 'nested_dict': {'lst_int': [[1, 2], [1, 2]], | |||
'c': {'int':[1, 1]}}} | |||
findDictDiff(raw_pad_batch, collator(dict_batch)) | |||
collator = Collator(backend='raw') | |||
collator.set_pad(('nested_dict', 'c'), pad_val=None) | |||
collator.set_ignore('str', 'int', 'lst_int') | |||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], | |||
'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], | |||
'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, | |||
'set': [{'1'}, {'2'}], 'nested_dict': {'lst_int': [[1, 2], [1, 2]], | |||
'c': [{'int':1}, {'int':1}]}} | |||
pad_batch = collator(dict_batch) | |||
findDictDiff(raw_pad_batch, pad_batch) | |||
collator = Collator(backend='raw') | |||
collator.set_pad(('nested_dict', 'c'), pad_val=1) | |||
with pytest.raises(BaseException): | |||
collator(dict_batch) | |||
collator = Collator(backend='raw') | |||
collator.set_ignore('str', 'int', 'lst_int') | |||
collator.set_pad(('nested_dict', 'c'), pad_fn=lambda x: [d['int'] for d in x]) | |||
pad_batch = collator(dict_batch) | |||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], | |||
'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], | |||
'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, | |||
'set': [{'1'}, {'2'}], 'nested_dict': {'lst_int': [[1, 2], [1, 2]], | |||
'c': [1, 1]}} | |||
findDictDiff(raw_pad_batch, pad_batch) | |||
@@ -1,293 +0,0 @@ | |||
import numpy as np | |||
import pytest | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH, _NEED_IMPORT_PADDLE, _NEED_IMPORT_JITTOR | |||
from fastNLP.core.collators.new_collator import Collator | |||
def _assert_equal(d1, d2): | |||
try: | |||
if 'torch' in str(type(d1)): | |||
if 'float64' in str(d2.dtype): | |||
print(d2.dtype) | |||
assert (d1 == d2).all().item() | |||
else: | |||
assert all(d1 == d2) | |||
except TypeError: | |||
assert d1 == d2 | |||
except ValueError: | |||
assert (d1 == d2).all() | |||
def findDictDiff(d1, d2, path=""): | |||
for k in d1: | |||
if k in d2: | |||
if isinstance(d1[k], dict): | |||
findDictDiff(d1[k], d2[k], "%s -> %s" % (path, k) if path else k) | |||
else: | |||
_assert_equal(d1[k], d2[k]) | |||
else: | |||
raise RuntimeError("%s%s as key not in d2\n" % ("%s: " % path if path else "", k)) | |||
def findListDiff(d1, d2): | |||
assert len(d1)==len(d2) | |||
for _d1, _d2 in zip(d1, d2): | |||
if isinstance(_d1, list): | |||
findListDiff(_d1, _d2) | |||
else: | |||
_assert_equal(_d1, _d2) | |||
class TestCollator: | |||
@pytest.mark.torch | |||
def test_run(self): | |||
dict_batch = [{ | |||
'str': '1', | |||
'lst_str': ['1'], | |||
'int': 1, | |||
'lst_int': [1], | |||
'nest_lst_int': [[1]], | |||
'float': 1.1, | |||
'lst_float': [1.1], | |||
'bool': True, | |||
'numpy': np.ones(1), | |||
'dict': {'1': '1'}, | |||
'set': {'1'}, | |||
'nested_dict': {'a': 1, 'b':[1, 2]} | |||
}, | |||
{ | |||
'str': '2', | |||
'lst_str': ['2', '2'], | |||
'int': 2, | |||
'lst_int': [1, 2], | |||
'nest_lst_int': [[1], [1, 2]], | |||
'float': 2.1, | |||
'lst_float': [2.1], | |||
'bool': False, | |||
'numpy': np.zeros(1), | |||
'dict': {'1': '2'}, | |||
'set': {'2'}, | |||
'nested_dict': {'a': 2, 'b': [1, 2]} | |||
} | |||
] | |||
list_batch = [['1', ['1'], 1, [1], [[1]], 1.1, [1.1], True, np.ones(1), {'1': '1'}, {'1'}], | |||
['2', ['2', '2'], 2, [2, 2], [[1], [1, 2]], 2.1, [2.1], False, np.ones(2), {'2': '2'}, {'2'}]] | |||
raw_pad_batch = {'str': ['1', '2'], 'lst_str': [['1'], ['2', '2']], 'int': [1, 2], 'lst_int': [[1, 0], [1, 2]], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], 'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'a': [1, 2], 'b': [[1, 2], [1, 2]]}} | |||
collator = Collator(backend='raw') | |||
assert raw_pad_batch == collator(dict_batch) | |||
collator = Collator(backend='raw') | |||
raw_pad_lst = [['1', '2'], [['1'], ['2', '2']], [1, 2], [[1, 0], [2, 2]], [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], | |||
[1.1, 2.1], [[1.1], [2.1]], [True, False], [np.ones(1), np.ones(2)], [{'1': '1'}, {'2': '2'}], | |||
[{'1'}, {'2'}]] | |||
findListDiff(raw_pad_lst, collator(list_batch)) | |||
collator = Collator(backend='numpy') | |||
numpy_pad_batch = {'str': ['1', '2'], 'lst_str': [['1'], ['2', '2']], 'int': np.array([1, 2]), 'lst_int': np.array([[1, 0], [1, 2]]), | |||
'nest_lst_int': np.array([[[1, 0], [0, 0]], [[1, 0], [1, 2]]]), 'float': np.array([1.1, 2.1]), | |||
'lst_float': np.array([[1.1], [2.1]]), 'bool': np.array([True, False]), 'numpy': np.array([[1], [0]]), | |||
'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'a': np.array([1, 2]), | |||
'b': np.array([[1, 2], [1, 2]])}} | |||
findDictDiff(numpy_pad_batch, collator(dict_batch)) | |||
collator = Collator(backend='numpy') | |||
numpy_pad_lst = [['1', '2'], [['1'], ['2', '2']], np.array([1, 2]), np.array([[1, 0], [2, 2]]), | |||
np.array([[[1, 0], [0, 0]], [[1, 0], [1, 2]]]), | |||
np.array([1.1, 2.1]), np.array([[1.1], [2.1]]), np.array([True, False]), | |||
np.array([[1, 0], [1, 1]]), [{'1': '1'}, {'2': '2'}], | |||
[{'1'}, {'2'}]] | |||
findListDiff(numpy_pad_lst, collator(list_batch)) | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
collator = Collator(backend='torch') | |||
numpy_pad_batch = {'str': ['1', '2'], 'lst_str': [['1'], ['2', '2']], 'int': torch.LongTensor([1, 2]), | |||
'lst_int': torch.LongTensor([[1, 0], [1, 2]]), | |||
'nest_lst_int': torch.LongTensor([[[1, 0], [0, 0]], [[1, 0], [1, 2]]]), | |||
'float': torch.FloatTensor([1.1, 2.1]), | |||
'lst_float': torch.FloatTensor([[1.1], [2.1]]), 'bool': torch.BoolTensor([True, False]), | |||
'numpy': torch.FloatTensor([[1], [0]]), | |||
'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'a': torch.LongTensor([1, 2]), | |||
'b': torch.LongTensor( | |||
[[1, 2], [1, 2]])}} | |||
findDictDiff(numpy_pad_batch, collator(dict_batch)) | |||
collator = Collator(backend='torch') | |||
torch_pad_lst = [['1', '2'], [['1'], ['2', '2']], torch.LongTensor([1, 2]), torch.LongTensor([[1, 0], [2, 2]]), | |||
torch.LongTensor([[[1, 0], [0, 0]], [[1, 0], [1, 2]]]), | |||
torch.FloatTensor([1.1, 2.1]), torch.FloatTensor([[1.1], [2.1]]), torch.BoolTensor([True, False]), | |||
torch.LongTensor([[1, 0], [1, 1]]), [{'1': '1'}, {'2': '2'}], | |||
[{'1'}, {'2'}]] | |||
findListDiff(torch_pad_lst, collator(list_batch)) | |||
def test_pad(self): | |||
dict_batch = [{ | |||
'str': '1', | |||
'lst_str': ['1'], | |||
'int': 1, | |||
'lst_int': [1], | |||
'nest_lst_int': [[1]], | |||
'float': 1.1, | |||
'lst_float': [1.1], | |||
'bool': True, | |||
'numpy': np.ones(1), | |||
'dict': {'1': '1'}, | |||
'set': {'1'}, | |||
'nested_dict': {'a': 1, 'b':[1, 2]} | |||
}, | |||
{ | |||
'str': '2', | |||
'lst_str': ['2', '2'], | |||
'int': 2, | |||
'lst_int': [1, 2], | |||
'nest_lst_int': [[1], [1, 2]], | |||
'float': 2.1, | |||
'lst_float': [2.1], | |||
'bool': False, | |||
'numpy': np.zeros(1), | |||
'dict': {'1': '2'}, | |||
'set': {'2'}, | |||
'nested_dict': {'a': 2, 'b': [1, 2]} | |||
} | |||
] | |||
raw_pad_batch = {'str': ['1', '2'], 'lst_str': [['1'], ['2', '2']], 'int': [1, 2], 'lst_int': [[1, 0], [1, 2]], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], 'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'a': [1, 2], 'b': [[1, 2], [1, 2]]}} | |||
# 测试 ignore | |||
collator = Collator(backend='raw') | |||
collator.set_ignore('str', 'int', 'lst_int', ('nested_dict', 'a')) | |||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], 'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'b': [[1, 2], [1, 2]]}} | |||
findDictDiff(raw_pad_batch, collator(dict_batch)) | |||
# 测试 set_pad | |||
collator = Collator(backend='raw') | |||
collator.set_pad('str', pad_val=1) | |||
with pytest.raises(BaseException): | |||
collator(dict_batch) | |||
# 测试设置 pad 值 | |||
collator = Collator(backend='raw') | |||
collator.set_pad('nest_lst_int', pad_val=100) | |||
collator.set_ignore('str', 'int', 'lst_int', ('nested_dict','a')) | |||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 100], [100, 100]], [[1, 100], [1, 2]]], | |||
'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'b': [[1, 2], [1, 2]]}} | |||
findDictDiff(raw_pad_batch, collator(dict_batch)) | |||
# 设置 backend 和 type | |||
collator.set_pad('float', pad_val=100, backend='numpy', dtype=int) | |||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 100], [100, 100]], [[1, 100], [1, 2]]], | |||
'float': np.array([1, 2]), 'lst_float': [[1.1], [2.1]], 'bool': [True, False], 'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, 'set': [{'1'}, {'2'}], 'nested_dict': {'b': [[1, 2], [1, 2]]}} | |||
findDictDiff(raw_pad_batch, collator(dict_batch)) | |||
# raw_pad_lst = [['1', '2'], [['1'], ['2', '2']], [1, 2], [[1, 0], [2, 2]], [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], | |||
# [1.1, 2.1], [[1.1], [2.1]], [True, False], [np.ones(1), np.ones(2)], [{'1': '1'}, {'2': '2'}], | |||
# [{'1'}, {'2'}]] | |||
list_batch = [['1', ['1'], 1, [1], [[1]], 1.1, [1.1], True, np.ones(1), {'1': '1'}, {'1'}], | |||
['2', ['2', '2'], 2, [2, 2], [[1], [1, 2]], 2.1, [2.1], False, np.ones(2), {'2': '2'}, {'2'}]] | |||
collator = Collator(backend='raw') | |||
collator.set_ignore('_0', '_3', '_1') | |||
collator.set_pad('_4', pad_val=None) | |||
raw_pad_lst = [[1, 2], [[[1]], [[1], [1, 2]]], | |||
[1.1, 2.1], [[1.1], [2.1]], [True, False], [np.ones(1), np.ones(2)], [{'1': '1'}, {'2': '2'}], | |||
[{'1'}, {'2'}]] | |||
findListDiff(raw_pad_lst, collator(list_batch)) | |||
collator = Collator(backend='raw') | |||
collator.set_pad('_0', pad_val=1) | |||
with pytest.raises(BaseException): | |||
collator(dict_batch) | |||
list_batch = [['1', ['1'], 1, [1], [[1]], 1.1, [1.1], True, np.ones(1), {'1': '1'}, {'1'}], | |||
['2', ['2', '2'], 2, [2, 2], [[1], [1, 2]], 2.1, [2.1], False, np.ones(2), {'2': '2'}, {'2'}]] | |||
collator = Collator(backend='raw') | |||
collator.set_ignore('_0', '_3', '_1') | |||
collator.set_pad('_2', backend='numpy') | |||
collator.set_pad('_4', backend='numpy', pad_val=100) | |||
raw_pad_lst = [np.array([1, 2]), np.array([[[1, 100], [100, 100]], [[1, 100], [1, 2]]]), | |||
[1.1, 2.1], [[1.1], [2.1]], [True, False], [np.ones(1), np.ones(2)], [{'1': '1'}, {'2': '2'}], | |||
[{'1'}, {'2'}]] | |||
findListDiff(raw_pad_lst, collator(list_batch)) | |||
# _single | |||
collator = Collator() | |||
collator.set_pad('_single') | |||
findListDiff(list_batch, collator(list_batch)) | |||
def test_nest_ignore(self): | |||
dict_batch = [{ | |||
'str': '1', | |||
'lst_str': ['1'], | |||
'int': 1, | |||
'lst_int': [1], | |||
'nest_lst_int': [[1]], | |||
'float': 1.1, | |||
'lst_float': [1.1], | |||
'bool': True, | |||
'numpy': np.ones(1), | |||
'dict': {'1': '1'}, | |||
'set': {'1'}, | |||
'nested_dict': {'int': 1, 'lst_int':[1, 2], 'c': {'int': 1}} | |||
}, | |||
{ | |||
'str': '2', | |||
'lst_str': ['2', '2'], | |||
'int': 2, | |||
'lst_int': [1, 2], | |||
'nest_lst_int': [[1], [1, 2]], | |||
'float': 2.1, | |||
'lst_float': [2.1], | |||
'bool': False, | |||
'numpy': np.zeros(1), | |||
'dict': {'1': '2'}, | |||
'set': {'2'}, | |||
'nested_dict': {'int': 1, 'lst_int': [1, 2], 'c': {'int': 1}} | |||
} | |||
] | |||
# 测试 ignore | |||
collator = Collator(backend='raw') | |||
collator.set_ignore('str', 'int', 'lst_int', ('nested_dict', 'int')) | |||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], | |||
'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], | |||
'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, | |||
'set': [{'1'}, {'2'}], 'nested_dict': {'lst_int': [[1, 2], [1, 2]], | |||
'c': {'int':[1, 1]}}} | |||
findDictDiff(raw_pad_batch, collator(dict_batch)) | |||
collator = Collator(backend='raw') | |||
collator.set_pad(('nested_dict', 'c'), pad_val=None) | |||
collator.set_ignore('str', 'int', 'lst_int') | |||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], | |||
'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], | |||
'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, | |||
'set': [{'1'}, {'2'}], 'nested_dict': {'lst_int': [[1, 2], [1, 2]], | |||
'c': [{'int':1}, {'int':1}]}} | |||
pad_batch = collator(dict_batch) | |||
findDictDiff(raw_pad_batch, pad_batch) | |||
collator = Collator(backend='raw') | |||
collator.set_pad(('nested_dict', 'c'), pad_val=1) | |||
with pytest.raises(BaseException): | |||
collator(dict_batch) | |||
collator = Collator(backend='raw') | |||
collator.set_ignore('str', 'int', 'lst_int') | |||
collator.set_pad(('nested_dict', 'c'), pad_fn=lambda x: [d['int'] for d in x]) | |||
pad_batch = collator(dict_batch) | |||
raw_pad_batch = {'lst_str': [['1'], ['2', '2']], 'nest_lst_int': [[[1, 0], [0, 0]], [[1, 0], [1, 2]]], | |||
'float': [1.1, 2.1], 'lst_float': [[1.1], [2.1]], 'bool': [True, False], | |||
'numpy': [np.array([1.]), np.array([0.])], 'dict': {'1': ['1', '2']}, | |||
'set': [{'1'}, {'2'}], 'nested_dict': {'lst_int': [[1, 2], [1, 2]], | |||
'c': [1, 1]}} | |||
findDictDiff(raw_pad_batch, pad_batch) | |||
@@ -1,17 +1,20 @@ | |||
import pytest | |||
from typing import Any | |||
from dataclasses import dataclass | |||
from torch.optim import SGD | |||
from torch.utils.data import DataLoader | |||
from torchmetrics import Accuracy | |||
import torch.distributed as dist | |||
from fastNLP.core.controllers.trainer import Trainer | |||
from fastNLP.core.callbacks.callback_events import Events | |||
from fastNLP.core.callbacks.callback_event import Event | |||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification | |||
from tests.helpers.callbacks.helper_callbacks import RecordTrainerEventTriggerCallback | |||
from tests.helpers.utils import magic_argv_env_context, Capturing | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
from torch.optim import SGD | |||
from torch.utils.data import DataLoader | |||
from torchmetrics import Accuracy | |||
import torch.distributed as dist | |||
@dataclass | |||
@@ -62,12 +65,11 @@ def model_and_optimizers(): | |||
return trainer_params | |||
@pytest.mark.torch | |||
@pytest.mark.parametrize("driver,device", [("torch", "cpu")]) # , ("torch", 6), ("torch", [6, 7]) | |||
@pytest.mark.parametrize("callbacks", [[RecordTrainerEventTriggerCallback()]]) | |||
@pytest.mark.torch | |||
@magic_argv_env_context | |||
def test_trainer_event_trigger( | |||
def test_trainer_event_trigger_1( | |||
model_and_optimizers: TrainerParameters, | |||
driver, | |||
device, | |||
@@ -97,8 +99,215 @@ def test_trainer_event_trigger( | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
for name, member in Events.__members__.items(): | |||
assert member.value in output[0] | |||
Event_attrs = Event.__dict__ | |||
for k, v in Event_attrs.items(): | |||
if isinstance(v, staticmethod): | |||
assert k in output[0] | |||
@pytest.mark.torch | |||
@pytest.mark.parametrize("driver,device", [("torch", "cpu")]) # , ("torch", 6), ("torch", [6, 7]) | |||
@magic_argv_env_context | |||
def test_trainer_event_trigger_2( | |||
model_and_optimizers: TrainerParameters, | |||
driver, | |||
device, | |||
n_epochs=2, | |||
): | |||
@Trainer.on(Event.on_after_trainer_initialized()) | |||
def on_after_trainer_initialized(trainer, driver): | |||
print("on_after_trainer_initialized") | |||
@Trainer.on(Event.on_sanity_check_begin()) | |||
def on_sanity_check_begin(trainer): | |||
print("on_sanity_check_begin") | |||
@Trainer.on(Event.on_sanity_check_end()) | |||
def on_sanity_check_end(trainer, sanity_check_res): | |||
print("on_sanity_check_end") | |||
@Trainer.on(Event.on_train_begin()) | |||
def on_train_begin(trainer): | |||
print("on_train_begin") | |||
@Trainer.on(Event.on_train_end()) | |||
def on_train_end(trainer): | |||
print("on_train_end") | |||
@Trainer.on(Event.on_train_epoch_begin()) | |||
def on_train_epoch_begin(trainer): | |||
if trainer.cur_epoch_idx >= 1: | |||
# 触发 on_exception; | |||
raise Exception | |||
print("on_train_epoch_begin") | |||
@Trainer.on(Event.on_train_epoch_end()) | |||
def on_train_epoch_end(trainer): | |||
print("on_train_epoch_end") | |||
@Trainer.on(Event.on_fetch_data_begin()) | |||
def on_fetch_data_begin(trainer): | |||
print("on_fetch_data_begin") | |||
@Trainer.on(Event.on_fetch_data_end()) | |||
def on_fetch_data_end(trainer): | |||
print("on_fetch_data_end") | |||
@Trainer.on(Event.on_train_batch_begin()) | |||
def on_train_batch_begin(trainer, batch, indices=None): | |||
print("on_train_batch_begin") | |||
@Trainer.on(Event.on_train_batch_end()) | |||
def on_train_batch_end(trainer): | |||
print("on_train_batch_end") | |||
@Trainer.on(Event.on_exception()) | |||
def on_exception(trainer, exception): | |||
print("on_exception") | |||
@Trainer.on(Event.on_before_backward()) | |||
def on_before_backward(trainer, outputs): | |||
print("on_before_backward") | |||
@Trainer.on(Event.on_after_backward()) | |||
def on_after_backward(trainer): | |||
print("on_after_backward") | |||
@Trainer.on(Event.on_before_optimizers_step()) | |||
def on_before_optimizers_step(trainer, optimizers): | |||
print("on_before_optimizers_step") | |||
@Trainer.on(Event.on_after_optimizers_step()) | |||
def on_after_optimizers_step(trainer, optimizers): | |||
print("on_after_optimizers_step") | |||
@Trainer.on(Event.on_before_zero_grad()) | |||
def on_before_zero_grad(trainer, optimizers): | |||
print("on_before_zero_grad") | |||
@Trainer.on(Event.on_after_zero_grad()) | |||
def on_after_zero_grad(trainer, optimizers): | |||
print("on_after_zero_grad") | |||
@Trainer.on(Event.on_evaluate_begin()) | |||
def on_evaluate_begin(trainer): | |||
print("on_evaluate_begin") | |||
@Trainer.on(Event.on_evaluate_end()) | |||
def on_evaluate_end(trainer, results): | |||
print("on_evaluate_end") | |||
with pytest.raises(Exception): | |||
with Capturing() as output: | |||
trainer = Trainer( | |||
model=model_and_optimizers.model, | |||
driver=driver, | |||
device=device, | |||
optimizers=model_and_optimizers.optimizers, | |||
train_dataloader=model_and_optimizers.train_dataloader, | |||
evaluate_dataloaders=model_and_optimizers.evaluate_dataloaders, | |||
input_mapping=model_and_optimizers.input_mapping, | |||
output_mapping=model_and_optimizers.output_mapping, | |||
metrics=model_and_optimizers.metrics, | |||
n_epochs=n_epochs, | |||
) | |||
trainer.run() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
Event_attrs = Event.__dict__ | |||
for k, v in Event_attrs.items(): | |||
if isinstance(v, staticmethod): | |||
assert k in output[0] | |||
@pytest.mark.parametrize("driver,device", [("torch", "cpu"), ("torch", 6)]) | |||
@pytest.mark.torch | |||
@magic_argv_env_context | |||
def test_trainer_event_trigger_3( | |||
model_and_optimizers: TrainerParameters, | |||
driver, | |||
device, | |||
n_epochs=2, | |||
): | |||
import re | |||
once_message_1 = "This message should be typed 1 times." | |||
once_message_2 = "test_filter_fn" | |||
once_message_3 = "once message 3" | |||
twice_message = "twice message hei hei" | |||
@Trainer.on(Event.on_train_epoch_begin(every=2)) | |||
def train_epoch_begin_1(trainer): | |||
print(once_message_1) | |||
@Trainer.on(Event.on_train_epoch_begin()) | |||
def train_epoch_begin_2(trainer): | |||
print(twice_message) | |||
@Trainer.on(Event.on_train_epoch_begin(once=2)) | |||
def train_epoch_begin_3(trainer): | |||
print(once_message_3) | |||
def filter_fn(filter, trainer): | |||
if trainer.cur_epoch_idx == 1: | |||
return True | |||
else: | |||
return False | |||
@Trainer.on(Event.on_train_epoch_end(filter_fn=filter_fn)) | |||
def test_filter_fn(trainer): | |||
print(once_message_2) | |||
with Capturing() as output: | |||
trainer = Trainer( | |||
model=model_and_optimizers.model, | |||
driver=driver, | |||
device=device, | |||
optimizers=model_and_optimizers.optimizers, | |||
train_dataloader=model_and_optimizers.train_dataloader, | |||
evaluate_dataloaders=model_and_optimizers.evaluate_dataloaders, | |||
input_mapping=model_and_optimizers.input_mapping, | |||
output_mapping=model_and_optimizers.output_mapping, | |||
metrics=model_and_optimizers.metrics, | |||
n_epochs=n_epochs, | |||
) | |||
trainer.run() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
once_pattern_1 = re.compile(once_message_1) | |||
once_pattern_2 = re.compile(once_message_2) | |||
once_pattern_3 = re.compile(once_message_3) | |||
twice_pattern = re.compile(twice_message) | |||
once_res_1 = once_pattern_1.findall(output[0]) | |||
assert len(once_res_1) == 1 | |||
once_res_2 = once_pattern_2.findall(output[0]) | |||
assert len(once_res_2) == 1 | |||
once_res_3 = once_pattern_3.findall(output[0]) | |||
assert len(once_res_3) == 1 | |||
twice_res = twice_pattern.findall(output[0]) | |||
assert len(twice_res) == 2 | |||
@@ -1,22 +1,22 @@ | |||
import pytest | |||
from fastNLP.core.controllers.trainer import Trainer | |||
from fastNLP.core.callbacks import Events | |||
from fastNLP.core.callbacks import Event | |||
from tests.helpers.utils import magic_argv_env_context | |||
@magic_argv_env_context | |||
def test_trainer_torch_without_evaluator(): | |||
@Trainer.on(Events.on_train_epoch_begin(every=10)) | |||
@Trainer.on(Event.on_train_epoch_begin(every=10), marker="test_trainer_other_things") | |||
def fn1(trainer): | |||
pass | |||
@Trainer.on(Events.on_train_batch_begin(every=10)) | |||
@Trainer.on(Event.on_train_batch_begin(every=10), marker="test_trainer_other_things") | |||
def fn2(trainer, batch, indices): | |||
pass | |||
with pytest.raises(AssertionError): | |||
@Trainer.on(Events.on_train_batch_begin(every=10)) | |||
with pytest.raises(BaseException): | |||
@Trainer.on(Event.on_train_batch_begin(every=10), marker="test_trainer_other_things") | |||
def fn3(trainer, batch): | |||
pass | |||
@@ -2,9 +2,7 @@ | |||
注意这一文件中的测试函数都应当是在 `test_trainer_w_evaluator_torch.py` 中已经测试过的测试函数的基础上加上 metrics 和 evaluator 修改而成; | |||
""" | |||
import pytest | |||
from torch.optim import SGD | |||
from torch.utils.data import DataLoader | |||
import torch.distributed as dist | |||
from dataclasses import dataclass | |||
from typing import Any | |||
from torchmetrics import Accuracy | |||
@@ -14,7 +12,11 @@ from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset_Classification, TorchArgMaxDataset | |||
from tests.helpers.callbacks.helper_callbacks import RecordLossCallback, RecordMetricCallback | |||
from tests.helpers.utils import magic_argv_env_context | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
from torch.optim import SGD | |||
from torch.utils.data import DataLoader | |||
import torch.distributed as dist | |||
@dataclass | |||
class NormalClassificationTrainTorchConfig: | |||
@@ -2,9 +2,7 @@ import os.path | |||
import subprocess | |||
import sys | |||
import pytest | |||
import torch.distributed as dist | |||
from torch.optim import SGD | |||
from torch.utils.data import DataLoader | |||
from dataclasses import dataclass | |||
from typing import Any | |||
from pathlib import Path | |||
@@ -16,6 +14,11 @@ from tests.helpers.callbacks.helper_callbacks import RecordLossCallback | |||
from tests.helpers.callbacks.helper_callbacks_torch import RecordAccumulationStepsCallback_Torch | |||
from tests.helpers.utils import magic_argv_env_context, Capturing | |||
from fastNLP.core import rank_zero_rm | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch.distributed as dist | |||
from torch.optim import SGD | |||
from torch.utils.data import DataLoader | |||
@dataclass | |||
@@ -257,9 +260,9 @@ def test_trainer_on_exception( | |||
cur_rank, | |||
n_epochs=2, | |||
): | |||
from fastNLP.core.callbacks.callback_events import Events | |||
from fastNLP.core.callbacks.callback_event import Event | |||
@Trainer.on(Events.on_train_epoch_end) | |||
@Trainer.on(Event.on_train_epoch_end()) | |||
def raise_exception(trainer): | |||
if trainer.driver.get_local_rank() == cur_rank: | |||
raise NotImplementedError | |||
@@ -286,6 +289,7 @@ def test_trainer_on_exception( | |||
dist.destroy_process_group() | |||
@pytest.mark.torch | |||
@pytest.mark.parametrize("version", [0, 1, 2, 3]) | |||
@magic_argv_env_context | |||
def test_torch_distributed_launch_1(version): | |||
@@ -1,7 +1,7 @@ | |||
from functools import reduce | |||
from fastNLP.core.controllers.utils.utils import _TruncatedDataLoader # TODO: 该类修改过,记得将 test 也修改; | |||
from tests.helpers.datasets.normal_data import NormalIterator | |||
from tests.helpers.datasets.normal_data import NormalSampler | |||
class Test_WrapDataLoader: | |||
@@ -9,9 +9,9 @@ class Test_WrapDataLoader: | |||
def test_normal_generator(self): | |||
all_sanity_batches = [4, 20, 100] | |||
for sanity_batches in all_sanity_batches: | |||
data = NormalIterator(num_of_data=1000) | |||
data = NormalSampler(num_of_data=1000) | |||
wrapper = _TruncatedDataLoader(dataloader=data, num_batches=sanity_batches) | |||
dataloader = iter(wrapper(dataloader=data)) | |||
dataloader = iter(wrapper) | |||
mark = 0 | |||
while True: | |||
try: | |||
@@ -32,8 +32,7 @@ class Test_WrapDataLoader: | |||
dataset = TorchNormalDataset(num_of_data=1000) | |||
dataloader = DataLoader(dataset, batch_size=bs, shuffle=True) | |||
wrapper = _TruncatedDataLoader(dataloader, num_batches=sanity_batches) | |||
dataloader = wrapper(dataloader) | |||
dataloader = iter(dataloader) | |||
dataloader = iter(wrapper) | |||
all_supposed_running_data_num = 0 | |||
while True: | |||
try: | |||
@@ -55,6 +54,5 @@ class Test_WrapDataLoader: | |||
dataset = TorchNormalDataset(num_of_data=1000) | |||
dataloader = DataLoader(dataset, batch_size=bs, shuffle=True) | |||
wrapper = _TruncatedDataLoader(dataloader, num_batches=sanity_batches) | |||
dataloader = wrapper(dataloader) | |||
length.append(len(dataloader)) | |||
length.append(len(wrapper)) | |||
assert length == reduce(lambda x, y: x+y, [all_sanity_batches for _ in range(len(bses))]) |
@@ -15,7 +15,7 @@ else: | |||
class Model (Module): | |||
class Model(Module): | |||
def __init__ (self): | |||
super (Model, self).__init__() | |||
self.conv1 = nn.Conv (3, 32, 3, 1) # no padding | |||
@@ -45,6 +45,7 @@ class Model (Module): | |||
return x | |||
@pytest.mark.jittor | |||
@pytest.mark.skip("Skip jittor tests now.") | |||
class TestSingleDevice: | |||
def test_on_gpu_without_fp16(self): | |||
@@ -2,7 +2,7 @@ import pytest | |||
from pathlib import Path | |||
from fastNLP.core.drivers.paddle_driver.single_device import PaddleSingleDriver | |||
from fastNLP.core.samplers import RandomBatchSampler, RandomSampler | |||
from fastNLP.core.samplers import ReproduceBatchSampler, RandomSampler | |||
from tests.helpers.models.paddle_model import PaddleNormalModel_Classification_1 | |||
from tests.helpers.datasets.paddle_data import PaddleNormalDataset, PaddleRandomMaxDataset | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset | |||
@@ -278,7 +278,7 @@ class TestPaddleDriverFunctions: | |||
dataset = PaddleNormalDataset() | |||
dataloader = DataLoader( | |||
dataset, | |||
batch_sampler=RandomBatchSampler( | |||
batch_sampler=ReproduceBatchSampler( | |||
BatchSampler(dataset, batch_size=batch_size, shuffle=shuffle), | |||
batch_size, | |||
drop_last, | |||
@@ -287,7 +287,7 @@ class TestPaddleDriverFunctions: | |||
res = PaddleSingleDriver.get_dataloader_args(dataloader) | |||
assert isinstance(res.dataset, PaddleNormalDataset) | |||
assert isinstance(res.batch_sampler, RandomBatchSampler) | |||
assert isinstance(res.batch_sampler, ReproduceBatchSampler) | |||
if shuffle: | |||
assert isinstance(res.sampler, paddle.io.RandomSampler) | |||
else: | |||
@@ -387,7 +387,7 @@ class TestSetDistReproDataloader: | |||
""" | |||
测试 set_dist_repro_dataloader 参数 `reproducible` 为 True 时的表现 | |||
当dist为字符串时,此时应该返回新的 dataloader,且如果原 sampler 为 paddle.io.RandomSampler(shuffle=True), | |||
只会替换 Sampler 为 RandomSampler;否则会替换 batch_sampler 为 RandomBatchSampler | |||
只会替换 Sampler 为 RandomSampler;否则会替换 batch_sampler 为 ReproduceBatchSampler | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist="dist", reproducible=True) | |||
@@ -400,7 +400,7 @@ class TestSetDistReproDataloader: | |||
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) | |||
else: | |||
# 此时会替换 batch_sampler | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler.batch_sampler, BatchSampler) | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
@@ -414,11 +414,11 @@ class TestSetDistReproDataloader: | |||
应该返回新的 dataloader,并将 batch_sampler 替换为 dist 对应的 Sampler | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=not shuffle) | |||
dist = RandomBatchSampler(BatchSampler(self.dataset, batch_size=4, shuffle=shuffle), 4, False) | |||
dist = ReproduceBatchSampler(BatchSampler(self.dataset, batch_size=4, shuffle=shuffle), 4, False) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist=dist, reproducible=False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert replaced_loader.batch_sampler is dist | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
@@ -450,7 +450,7 @@ class TestSetDistReproDataloader: | |||
""" | |||
dataloader = DataLoader( | |||
dataset=self.dataset, | |||
batch_sampler=RandomBatchSampler( | |||
batch_sampler=ReproduceBatchSampler( | |||
BatchSampler(self.dataset, batch_size=4, shuffle=shuffle), | |||
batch_size=4, | |||
drop_last=False, | |||
@@ -459,7 +459,7 @@ class TestSetDistReproDataloader: | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist="dist", reproducible=False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
@@ -500,20 +500,20 @@ class TestSetDistReproDataloader: | |||
if idx >= num_consumed_batches: | |||
break | |||
already_seen_idx.update(batch) | |||
if isinstance(replaced_loader.batch_sampler, RandomBatchSampler): | |||
if isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler): | |||
sampler_states = replaced_loader.batch_sampler.state_dict() | |||
else: | |||
sampler_states = replaced_loader.batch_sampler.sampler.state_dict() | |||
# 重新加载,应该可以输出剩下的内容,且对于 PaddleNormalDataset 来说,排序后应该是一个 range | |||
left_idxes = set() | |||
if isinstance(replaced_loader.batch_sampler, RandomBatchSampler): | |||
if isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler): | |||
batch_size = replaced_loader.batch_sampler.batch_size | |||
sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size | |||
# 重新改造 dataloader | |||
new_loader = DataLoader( | |||
dataset=replaced_loader.dataset, | |||
batch_sampler=RandomBatchSampler( | |||
batch_sampler=ReproduceBatchSampler( | |||
BatchSampler(replaced_loader.dataset, shuffle=shuffle, batch_size=batch_size), | |||
batch_size=batch_size, | |||
drop_last=False, | |||
@@ -603,7 +603,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16): | |||
dataset = PaddleRandomMaxDataset(40, 10) | |||
dataloader = DataLoader( | |||
dataset=dataset, | |||
batch_sampler=RandomBatchSampler(BatchSampler(dataset, batch_size=4), 4, False) | |||
batch_sampler=ReproduceBatchSampler(BatchSampler(dataset, batch_size=4), 4, False) | |||
) | |||
driver1, driver2 = generate_random_driver(10, 10, fp16, "gpu"), generate_random_driver(10, 10, False, "gpu") | |||
@@ -627,7 +627,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16): | |||
# 更改 batch_size | |||
dataloader = DataLoader( | |||
dataset=dataset, | |||
batch_sampler=RandomBatchSampler(BatchSampler(dataset, batch_size=2, shuffle=True), 2, False) | |||
batch_sampler=ReproduceBatchSampler(BatchSampler(dataset, batch_size=2, shuffle=True), 2, False) | |||
) | |||
load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
replaced_loader = load_states.pop("dataloader") | |||
@@ -637,7 +637,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16): | |||
# 2. 检查 batch_sampler 是否被正确地加载和替换 | |||
assert not (replaced_loader is dataloader) | |||
assert replaced_loader.batch_sampler is dataloader.batch_sampler | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert replaced_loader.batch_sampler.index_list == sampler_states["index_list"] | |||
assert replaced_loader.batch_sampler.num_consumed_samples == num_consumed_batches * 4 | |||
@@ -6,7 +6,7 @@ from fastNLP.core.drivers.paddle_driver.utils import ( | |||
replace_batch_sampler, | |||
replace_sampler, | |||
) | |||
from fastNLP.core.samplers import RandomBatchSampler, RandomSampler | |||
from fastNLP.core.samplers import ReproduceBatchSampler, RandomSampler | |||
from fastNLP.envs.imports import _NEED_IMPORT_PADDLE | |||
if _NEED_IMPORT_PADDLE: | |||
import paddle | |||
@@ -36,12 +36,12 @@ def test_get_device_from_visible_str(user_visible_devices, cuda_visible_devices, | |||
def test_replace_batch_sampler(): | |||
dataset = PaddleNormalDataset(10) | |||
dataloader = DataLoader(dataset, batch_size=32) | |||
batch_sampler = RandomBatchSampler(dataloader.batch_sampler, batch_size=16, drop_last=False) | |||
batch_sampler = ReproduceBatchSampler(dataloader.batch_sampler, batch_size=16, drop_last=False) | |||
replaced_loader = replace_batch_sampler(dataloader, batch_sampler) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert isinstance(replaced_loader.dataset, PaddleNormalDataset) | |||
assert len(replaced_loader.dataset) == len(dataset) | |||
assert replaced_loader.batch_sampler.batch_size == 16 | |||
@@ -13,12 +13,13 @@ from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset, TorchArgMaxDataset | |||
from tests.helpers.utils import magic_argv_env_context | |||
from fastNLP.core import rank_zero_rm | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
import torch.distributed as dist | |||
from torch.utils.data import DataLoader, BatchSampler | |||
import torch | |||
import torch.distributed as dist | |||
from torch.utils.data import DataLoader, BatchSampler | |||
def generate_driver(num_labels, feature_dimension, device=[0,1], fp16=False, output_from_new_proc="only_error"): | |||
def generate_driver(num_labels, feature_dimension, device=[0,1], fp16=False, output_from_new_proc="all"): | |||
torch_model = TorchNormalModel_Classification_1(num_labels, feature_dimension) | |||
torch_opt = torch.optim.Adam(params=torch_model.parameters(), lr=0.01) | |||
device = [torch.device(i) for i in device] | |||
@@ -72,108 +73,100 @@ def dataloader_with_randomsampler(dataset, batch_size, shuffle, drop_last, seed= | |||
# | |||
############################################################################ | |||
@pytest.mark.torch | |||
@magic_argv_env_context | |||
def test_multi_drivers(): | |||
""" | |||
测试使用了多个 TorchDDPDriver 的情况。 | |||
""" | |||
generate_driver(10, 10) | |||
generate_driver(20, 10) | |||
with pytest.raises(RuntimeError): | |||
# 设备设置不同,应该报错 | |||
generate_driver(20, 3, device=[0,1,2]) | |||
assert False | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@pytest.mark.torch | |||
class TestDDPDriverFunction: | |||
""" | |||
测试 TorchDDPDriver 一些简单函数的测试类,基本都是测试能否运行、是否存在 import 错误等问题 | |||
""" | |||
@classmethod | |||
def setup_class(cls): | |||
cls.driver = generate_driver(10, 10) | |||
@magic_argv_env_context | |||
def test_multi_drivers(self): | |||
def test_simple_functions(self): | |||
""" | |||
测试使用了多个 TorchDDPDriver 的情况。 | |||
简单测试多个函数 | |||
""" | |||
driver2 = generate_driver(20, 10) | |||
with pytest.raises(RuntimeError): | |||
# 设备设置不同,应该报错 | |||
driver3 = generate_driver(20, 3, device=[0,1,2]) | |||
assert False | |||
dist.barrier() | |||
driver = generate_driver(10, 10) | |||
@magic_argv_env_context | |||
def test_move_data_to_device(self): | |||
""" | |||
这个函数仅调用了torch_move_data_to_device,测试例在tests/core/utils/test_torch_utils.py中 | |||
就不重复测试了 | |||
测试 move_data_to_device 函数。这个函数仅调用了 torch_move_data_to_device ,测试例在 | |||
tests/core/utils/test_torch_utils.py中,就不重复测试了 | |||
""" | |||
self.driver.move_data_to_device(torch.rand((32, 64))) | |||
driver.move_data_to_device(torch.rand((32, 64))) | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_is_distributed(self): | |||
""" | |||
测试 is_distributed 函数 | |||
""" | |||
assert self.driver.is_distributed() == True | |||
assert driver.is_distributed() == True | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_get_no_sync_context(self): | |||
""" | |||
测试 get_no_sync_context 函数 | |||
""" | |||
res = self.driver.get_model_no_sync_context() | |||
res = driver.get_model_no_sync_context() | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_is_global_zero(self): | |||
""" | |||
测试 is_global_zero 函数 | |||
""" | |||
self.driver.is_global_zero() | |||
driver.is_global_zero() | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_unwrap_model(self): | |||
""" | |||
测试 unwrap_model 函数 | |||
""" | |||
self.driver.unwrap_model() | |||
driver.unwrap_model() | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_get_local_rank(self): | |||
""" | |||
测试 get_local_rank 函数 | |||
""" | |||
self.driver.get_local_rank() | |||
driver.get_local_rank() | |||
dist.barrier() | |||
@magic_argv_env_context | |||
def test_all_gather(self): | |||
""" | |||
测试 all_gather 函数 | |||
详细的测试在 test_dist_utils.py 中完成 | |||
""" | |||
obj = { | |||
"rank": self.driver.global_rank | |||
"rank": driver.global_rank | |||
} | |||
obj_list = self.driver.all_gather(obj, group=None) | |||
obj_list = driver.all_gather(obj, group=None) | |||
for i, res in enumerate(obj_list): | |||
assert res["rank"] == i | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("src_rank", ([0, 1])) | |||
def test_broadcast_object(self, src_rank): | |||
""" | |||
测试 broadcast_object 函数 | |||
详细的函数在 test_dist_utils.py 中完成 | |||
""" | |||
if self.driver.global_rank == src_rank: | |||
if driver.global_rank == 0: | |||
obj = { | |||
"rank": self.driver.global_rank | |||
"rank": driver.global_rank | |||
} | |||
else: | |||
obj = None | |||
res = self.driver.broadcast_object(obj, src=src_rank) | |||
assert res["rank"] == src_rank | |||
res = driver.broadcast_object(obj, src=0) | |||
assert res["rank"] == 0 | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
############################################################################ | |||
# | |||
@@ -187,7 +180,6 @@ class TestSetDistReproDataloader: | |||
@classmethod | |||
def setup_class(cls): | |||
cls.device = [0, 1] | |||
cls.driver = generate_driver(10, 10, device=cls.device) | |||
def setup_method(self): | |||
self.dataset = TorchNormalDataset(40) | |||
@@ -204,17 +196,20 @@ class TestSetDistReproDataloader: | |||
测试 set_dist_repro_dataloader 中 dist 为 BucketedBatchSampler 时的表现 | |||
此时应该将 batch_sampler 替换为 dist 对应的 BucketedBatchSampler | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=not shuffle) | |||
batch_sampler = BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, batch_sampler, False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, batch_sampler, False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler) | |||
assert replaced_loader.batch_sampler is batch_sampler | |||
self.check_distributed_sampler(replaced_loader.batch_sampler) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
self.check_set_dist_repro_dataloader(driver, dataloader, replaced_loader, shuffle) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
@@ -223,9 +218,10 @@ class TestSetDistReproDataloader: | |||
测试 set_dist_repro_dataloader 中 dist 为 RandomSampler 时的表现 | |||
此时应该将 batch_sampler.sampler 替换为 dist 对应的 RandomSampler | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=not shuffle) | |||
sampler = RandomSampler(self.dataset, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, sampler, False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, sampler, False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BatchSampler) | |||
@@ -234,9 +230,11 @@ class TestSetDistReproDataloader: | |||
assert replaced_loader.batch_sampler.sampler is sampler | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
self.check_set_dist_repro_dataloader(driver, dataloader, replaced_loader, shuffle) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
""" | |||
传入的参数 `dist` 为 None 的情况,这种情况出现在 trainer 和 evaluator 的初始化过程中,用户指定了 `use_dist_sampler` | |||
@@ -251,15 +249,17 @@ class TestSetDistReproDataloader: | |||
测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 True 时的表现 | |||
当用户在 driver 之外初始化了分布式环境时,fastnlp 不支持进行断点重训,此时应该报错 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=True) | |||
with pytest.raises(RuntimeError): | |||
# 应当抛出 RuntimeError | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, True) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, None, True) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
# @pytest.mark.parametrize("shuffle", ([True, False])) | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
def test_with_dist_none_reproducible_false_dataloader_reproducible_batch_sampler(self, shuffle): | |||
""" | |||
@@ -268,21 +268,24 @@ class TestSetDistReproDataloader: | |||
此时传入的 dataloader 的 batch_sampler 应该已经执行了 set_distributed,产生一个新的 dataloader,其 batch_sampler | |||
和原 dataloader 相同 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = dataloader_with_bucketedbatchsampler(self.dataset, self.dataset._data, 4, shuffle, False) | |||
dataloader.batch_sampler.set_distributed( | |||
num_replicas=self.driver.world_size, | |||
rank=self.driver.global_rank, | |||
num_replicas=driver.world_size, | |||
rank=driver.global_rank, | |||
pad=True | |||
) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, None, False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler) | |||
assert replaced_loader.batch_sampler.batch_size == 4 | |||
self.check_distributed_sampler(dataloader.batch_sampler) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
self.check_set_dist_repro_dataloader(driver, dataloader, replaced_loader, shuffle) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
@@ -292,12 +295,13 @@ class TestSetDistReproDataloader: | |||
此时传入的 dataloader 的 batch_sampler.sampler 应该已经执行了 set_distributed,产生一个新的 dataloader,其 | |||
batch_sampler.sampler 和原 dataloader 相同 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=False) | |||
dataloader.batch_sampler.sampler.set_distributed( | |||
num_replicas=self.driver.world_size, | |||
rank=self.driver.global_rank | |||
num_replicas=driver.world_size, | |||
rank=driver.global_rank | |||
) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, None, False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BatchSampler) | |||
@@ -307,9 +311,11 @@ class TestSetDistReproDataloader: | |||
assert replaced_loader.batch_sampler.batch_size == 4 | |||
assert replaced_loader.batch_sampler.drop_last == False | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
self.check_set_dist_repro_dataloader(driver, dataloader, replaced_loader, shuffle) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
@@ -318,11 +324,14 @@ class TestSetDistReproDataloader: | |||
测试 set_dist_repro_dataloader 中 dist 为 None、reproducible 为 False 、dataloader 为一般情况时的表现 | |||
此时直接返回原来的 dataloader,不做任何处理。 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, None, False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, None, False) | |||
assert replaced_loader is dataloader | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
""" | |||
传入的参数 `dist` 为 'dist' 的情况,这种情况出现在 trainer 的初始化过程中,用户指定了 `use_dist_sampler` 参数 | |||
@@ -337,12 +346,13 @@ class TestSetDistReproDataloader: | |||
的表现 | |||
此时应该返回一个新的 dataloader,其batch_sampler 和原 dataloader 相同,且应该正确地设置了分布式相关的属性 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = DataLoader( | |||
dataset=self.dataset, | |||
batch_sampler=BucketedBatchSampler(self.dataset, self.dataset._data, batch_size=4, shuffle=shuffle) | |||
) | |||
dataloader = dataloader_with_bucketedbatchsampler(self.dataset, self.dataset._data, 4, shuffle, False) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "dist", False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BucketedBatchSampler) | |||
@@ -351,6 +361,8 @@ class TestSetDistReproDataloader: | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
self.check_distributed_sampler(replaced_loader.batch_sampler) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
@@ -361,8 +373,9 @@ class TestSetDistReproDataloader: | |||
此时应该返回一个新的 dataloader,其 batch_sampler.sampler 和原 dataloader 相同,且应该正确地设置了分布式相关 | |||
的属性 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=False) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "dist", False) | |||
assert not (replaced_loader is dataloader) | |||
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) | |||
@@ -372,6 +385,8 @@ class TestSetDistReproDataloader: | |||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
@@ -381,8 +396,9 @@ class TestSetDistReproDataloader: | |||
此时应该返回一个新的 dataloader,并替换其 batch_sampler.sampler 为 RandomSampler,且应该正确设置了分布式相关 | |||
的属性 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "dist", False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "dist", False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BatchSampler) | |||
@@ -392,6 +408,8 @@ class TestSetDistReproDataloader: | |||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
""" | |||
传入的参数 `dist` 为 'unrepeatdist' 的情况,这种情况出现在 evaluator 的初始化过程中,用户指定了 `use_dist_sampler` 参数 | |||
@@ -407,8 +425,9 @@ class TestSetDistReproDataloader: | |||
此时应该返回一个新的 dataloader,且将原来的 Sampler 替换为 UnrepeatedRandomSampler,且正确地设置了分布式相关 | |||
的属性 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=False) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BatchSampler) | |||
@@ -418,6 +437,8 @@ class TestSetDistReproDataloader: | |||
assert replaced_loader.batch_sampler.sampler.shuffle == shuffle | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
@@ -427,8 +448,9 @@ class TestSetDistReproDataloader: | |||
的表现 | |||
此时应该返回一个新的 dataloader,且重新实例化了原来的 Sampler | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = dataloader_with_randomsampler(self.dataset, 4, shuffle, False, unrepeated=True) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BatchSampler) | |||
@@ -439,6 +461,8 @@ class TestSetDistReproDataloader: | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("shuffle", ([True, False])) | |||
@@ -448,8 +472,9 @@ class TestSetDistReproDataloader: | |||
此时应该返回一个新的 dataloader,且将 sampler 替换为 UnrepeatedSequentialSampler,并正确地设置了分布式相关 | |||
的属性 | |||
""" | |||
driver = generate_driver(10, 10, device=self.device) | |||
dataloader = DataLoader(self.dataset, batch_size=4, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) | |||
replaced_loader = driver.set_dist_repro_dataloader(dataloader, "unrepeatdist", False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, BatchSampler) | |||
@@ -459,6 +484,8 @@ class TestSetDistReproDataloader: | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
self.check_distributed_sampler(replaced_loader.batch_sampler.sampler) | |||
dist.barrier() | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
def check_distributed_sampler(self, sampler): | |||
""" | |||
@@ -469,7 +496,7 @@ class TestSetDistReproDataloader: | |||
if not isinstance(sampler, UnrepeatedSampler): | |||
assert sampler.pad == True | |||
def check_set_dist_repro_dataloader(self, dataloader, replaced_loader, shuffle): | |||
def check_set_dist_repro_dataloader(self, driver, dataloader, replaced_loader, shuffle): | |||
""" | |||
测试多卡下 set_dist_repro_dataloader 函数的执行结果是否正确 | |||
""" | |||
@@ -501,8 +528,8 @@ class TestSetDistReproDataloader: | |||
drop_last=False, | |||
) | |||
new_loader.batch_sampler.set_distributed( | |||
num_replicas=self.driver.world_size, | |||
rank=self.driver.global_rank, | |||
num_replicas=driver.world_size, | |||
rank=driver.global_rank, | |||
pad=True | |||
) | |||
new_loader.batch_sampler.load_state_dict(sampler_states) | |||
@@ -512,8 +539,8 @@ class TestSetDistReproDataloader: | |||
# 重新构造 dataloader | |||
new_loader = dataloader_with_randomsampler(replaced_loader.dataset, batch_size, shuffle, drop_last=False) | |||
new_loader.batch_sampler.sampler.set_distributed( | |||
num_replicas=self.driver.world_size, | |||
rank=self.driver.global_rank | |||
num_replicas=driver.world_size, | |||
rank=driver.global_rank | |||
) | |||
new_loader.batch_sampler.sampler.load_state_dict(sampler_states) | |||
for idx, batch in enumerate(new_loader): | |||
@@ -534,11 +561,6 @@ class TestSaveLoad: | |||
测试多卡情况下 save 和 load 相关函数的表现 | |||
""" | |||
@classmethod | |||
def setup_class(cls): | |||
# 不在这里 setup 的话会报错 | |||
cls.driver = generate_driver(10, 10) | |||
def setup_method(self): | |||
self.dataset = TorchArgMaxDataset(10, 20) | |||
@@ -552,26 +574,26 @@ class TestSaveLoad: | |||
path = "model" | |||
dataloader = DataLoader(self.dataset, batch_size=2) | |||
self.driver1, self.driver2 = generate_driver(10, 10), generate_driver(10, 10) | |||
driver1, driver2 = generate_driver(10, 10), generate_driver(10, 10) | |||
self.driver1.save_model(path, only_state_dict) | |||
driver1.save_model(path, only_state_dict) | |||
# 同步 | |||
dist.barrier() | |||
self.driver2.load_model(path, only_state_dict) | |||
driver2.load_model(path, only_state_dict) | |||
for idx, batch in enumerate(dataloader): | |||
batch = self.driver1.move_data_to_device(batch) | |||
res1 = self.driver1.model( | |||
batch = driver1.move_data_to_device(batch) | |||
res1 = driver1.model( | |||
batch, | |||
fastnlp_fn=self.driver1.model.module.model.evaluate_step, | |||
fastnlp_fn=driver1.model.module.model.evaluate_step, | |||
# Driver.model -> DataParallel.module -> _FleetWrappingModel.model | |||
fastnlp_signature_fn=None, | |||
wo_auto_param_call=False, | |||
) | |||
res2 = self.driver2.model( | |||
res2 = driver2.model( | |||
batch, | |||
fastnlp_fn=self.driver2.model.module.model.evaluate_step, | |||
fastnlp_fn=driver2.model.module.model.evaluate_step, | |||
fastnlp_signature_fn=None, | |||
wo_auto_param_call=False, | |||
) | |||
@@ -580,6 +602,9 @@ class TestSaveLoad: | |||
finally: | |||
rank_zero_rm(path) | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("only_state_dict", ([True, False])) | |||
@pytest.mark.parametrize("fp16", ([True, False])) | |||
@@ -593,7 +618,7 @@ class TestSaveLoad: | |||
path = "model.ckp" | |||
num_replicas = len(device) | |||
self.driver1, self.driver2 = generate_driver(10, 10, device=device, fp16=fp16), \ | |||
driver1, driver2 = generate_driver(10, 10, device=device, fp16=fp16), \ | |||
generate_driver(10, 10, device=device, fp16=False) | |||
dataloader = dataloader_with_bucketedbatchsampler( | |||
self.dataset, | |||
@@ -603,8 +628,8 @@ class TestSaveLoad: | |||
drop_last=False | |||
) | |||
dataloader.batch_sampler.set_distributed( | |||
num_replicas=self.driver1.world_size, | |||
rank=self.driver1.global_rank, | |||
num_replicas=driver1.world_size, | |||
rank=driver1.global_rank, | |||
pad=True | |||
) | |||
num_consumed_batches = 2 | |||
@@ -623,7 +648,7 @@ class TestSaveLoad: | |||
# 保存状态 | |||
sampler_states = dataloader.batch_sampler.state_dict() | |||
save_states = {"num_consumed_batches": num_consumed_batches} | |||
self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
# 加载 | |||
# 更改 batch_size | |||
dataloader = dataloader_with_bucketedbatchsampler( | |||
@@ -634,11 +659,11 @@ class TestSaveLoad: | |||
drop_last=False | |||
) | |||
dataloader.batch_sampler.set_distributed( | |||
num_replicas=self.driver2.world_size, | |||
rank=self.driver2.global_rank, | |||
num_replicas=driver2.world_size, | |||
rank=driver2.global_rank, | |||
pad=True | |||
) | |||
load_states = self.driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
replaced_loader = load_states.pop("dataloader") | |||
# 1. 检查 optimizer 的状态 | |||
# TODO optimizer 的 state_dict 总是为空 | |||
@@ -652,7 +677,7 @@ class TestSaveLoad: | |||
# 3. 检查 fp16 是否被加载 | |||
if fp16: | |||
assert isinstance(self.driver2.grad_scaler, torch.cuda.amp.GradScaler) | |||
assert isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler) | |||
# 4. 检查 model 的参数是否正确 | |||
# 5. 检查 batch_idx | |||
@@ -664,16 +689,16 @@ class TestSaveLoad: | |||
left_x_batches.update(batch["x"]) | |||
left_y_batches.update(batch["y"]) | |||
res1 = self.driver1.model( | |||
res1 = driver1.model( | |||
batch, | |||
fastnlp_fn=self.driver1.model.module.model.evaluate_step, | |||
fastnlp_fn=driver1.model.module.model.evaluate_step, | |||
# Driver.model -> DataParallel.module -> _FleetWrappingModel.model | |||
fastnlp_signature_fn=None, | |||
wo_auto_param_call=False, | |||
) | |||
res2 = self.driver2.model( | |||
res2 = driver2.model( | |||
batch, | |||
fastnlp_fn=self.driver2.model.module.model.evaluate_step, | |||
fastnlp_fn=driver2.model.module.model.evaluate_step, | |||
fastnlp_signature_fn=None, | |||
wo_auto_param_call=False, | |||
) | |||
@@ -686,6 +711,9 @@ class TestSaveLoad: | |||
finally: | |||
rank_zero_rm(path) | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() | |||
@magic_argv_env_context | |||
@pytest.mark.parametrize("only_state_dict", ([True, False])) | |||
@pytest.mark.parametrize("fp16", ([True, False])) | |||
@@ -700,13 +728,13 @@ class TestSaveLoad: | |||
num_replicas = len(device) | |||
self.driver1 = generate_driver(10, 10, device=device, fp16=fp16) | |||
self.driver2 = generate_driver(10, 10, device=device, fp16=False) | |||
driver1 = generate_driver(10, 10, device=device, fp16=fp16) | |||
driver2 = generate_driver(10, 10, device=device, fp16=False) | |||
dataloader = dataloader_with_randomsampler(self.dataset, 4, True, False, unrepeated=False) | |||
dataloader.batch_sampler.sampler.set_distributed( | |||
num_replicas=self.driver1.world_size, | |||
rank=self.driver1.global_rank, | |||
num_replicas=driver1.world_size, | |||
rank=driver1.global_rank, | |||
pad=True | |||
) | |||
num_consumed_batches = 2 | |||
@@ -726,18 +754,18 @@ class TestSaveLoad: | |||
sampler_states = dataloader.batch_sampler.sampler.state_dict() | |||
save_states = {"num_consumed_batches": num_consumed_batches} | |||
if only_state_dict: | |||
self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True) | |||
else: | |||
self.driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[torch.ones((16, 10))]) | |||
driver1.save(Path(path), save_states, dataloader, only_state_dict, should_save_model=True, input_spec=[torch.ones((16, 10))]) | |||
# 加载 | |||
# 更改 batch_size | |||
dataloader = dataloader_with_randomsampler(self.dataset, 2, True, False, unrepeated=False) | |||
dataloader.batch_sampler.sampler.set_distributed( | |||
num_replicas=self.driver2.world_size, | |||
rank=self.driver2.global_rank, | |||
num_replicas=driver2.world_size, | |||
rank=driver2.global_rank, | |||
pad=True | |||
) | |||
load_states = self.driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
load_states = driver2.load(Path(path), dataloader, only_state_dict, should_load_model=True) | |||
replaced_loader = load_states.pop("dataloader") | |||
# 1. 检查 optimizer 的状态 | |||
@@ -753,7 +781,7 @@ class TestSaveLoad: | |||
assert replaced_loader.batch_sampler.sampler.shuffle == sampler_states["shuffle"] | |||
# 3. 检查 fp16 是否被加载 | |||
if fp16: | |||
assert isinstance(self.driver2.grad_scaler, torch.cuda.amp.GradScaler) | |||
assert isinstance(driver2.grad_scaler, torch.cuda.amp.GradScaler) | |||
# 4. 检查 model 的参数是否正确 | |||
# 5. 检查 batch_idx | |||
@@ -765,16 +793,16 @@ class TestSaveLoad: | |||
left_x_batches.update(batch["x"]) | |||
left_y_batches.update(batch["y"]) | |||
res1 = self.driver1.model( | |||
res1 = driver1.model( | |||
batch, | |||
fastnlp_fn=self.driver1.model.module.model.evaluate_step, | |||
fastnlp_fn=driver1.model.module.model.evaluate_step, | |||
# Driver.model -> DataParallel.module -> _FleetWrappingModel.model | |||
fastnlp_signature_fn=None, | |||
wo_auto_param_call=False, | |||
) | |||
res2 = self.driver2.model( | |||
res2 = driver2.model( | |||
batch, | |||
fastnlp_fn=self.driver2.model.module.model.evaluate_step, | |||
fastnlp_fn=driver2.model.module.model.evaluate_step, | |||
fastnlp_signature_fn=None, | |||
wo_auto_param_call=False, | |||
) | |||
@@ -786,4 +814,7 @@ class TestSaveLoad: | |||
assert len(left_y_batches | already_seen_y_set) == len(self.dataset) / num_replicas | |||
finally: | |||
rank_zero_rm(path) | |||
rank_zero_rm(path) | |||
if dist.is_initialized(): | |||
dist.destroy_process_group() |
@@ -2,12 +2,14 @@ import pytest | |||
from fastNLP.core.drivers import TorchSingleDriver, TorchDDPDriver | |||
from fastNLP.core.drivers.torch_driver.initialize_torch_driver import initialize_torch_driver | |||
from fastNLP.envs import get_gpu_count | |||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
from tests.helpers.utils import magic_argv_env_context | |||
import torch | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
from torch import device as torchdevice | |||
else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as torchdevice | |||
@pytest.mark.torch | |||
def test_incorrect_driver(): | |||
@@ -20,7 +22,7 @@ def test_incorrect_driver(): | |||
@pytest.mark.torch | |||
@pytest.mark.parametrize( | |||
"device", | |||
["cpu", "cuda:0", 0, torch.device("cuda:0")] | |||
["cpu", "cuda:0", 0, torchdevice("cuda:0")] | |||
) | |||
@pytest.mark.parametrize( | |||
"driver", | |||
@@ -83,7 +85,6 @@ def test_get_ddp(driver, device): | |||
("driver", "device"), | |||
[("torch_ddp", "cpu")] | |||
) | |||
@magic_argv_env_context | |||
def test_get_ddp_cpu(driver, device): | |||
""" | |||
测试试图在 cpu 上初始化分布式训练的情况 | |||
@@ -96,13 +97,12 @@ def test_get_ddp_cpu(driver, device): | |||
@pytest.mark.torch | |||
@pytest.mark.parametrize( | |||
"device", | |||
[-2, [0, torch.cuda.device_count() + 1, 3], [-2], torch.cuda.device_count() + 1] | |||
[-2, [0, 20, 3], [-2], 20] | |||
) | |||
@pytest.mark.parametrize( | |||
"driver", | |||
["torch", "torch_ddp"] | |||
) | |||
@magic_argv_env_context | |||
def test_device_out_of_range(driver, device): | |||
""" | |||
测试传入的device超过范围的情况 | |||
@@ -2,7 +2,7 @@ import pytest | |||
from pathlib import Path | |||
from fastNLP.core.drivers.torch_driver.single_device import TorchSingleDriver | |||
from fastNLP.core.samplers import RandomBatchSampler, RandomSampler | |||
from fastNLP.core.samplers import ReproduceBatchSampler, RandomSampler | |||
from tests.helpers.models.torch_model import TorchNormalModel_Classification_1 | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset, TorchArgMaxDataset | |||
from tests.helpers.datasets.paddle_data import PaddleNormalDataset | |||
@@ -17,7 +17,7 @@ if _NEED_IMPORT_PADDLE: | |||
def dataloader_with_randombatchsampler(dataset, batch_size, shuffle, drop_last): | |||
""" | |||
建立一个 batch_sampler 为 RandomBatchSampler 的 dataloader | |||
建立一个 batch_sampler 为 ReproduceBatchSampler 的 dataloader | |||
""" | |||
if shuffle: | |||
sampler = torch.utils.data.RandomSampler(dataset) | |||
@@ -25,7 +25,7 @@ def dataloader_with_randombatchsampler(dataset, batch_size, shuffle, drop_last): | |||
sampler = torch.utils.data.SequentialSampler(dataset) | |||
dataloader = DataLoader( | |||
dataset=dataset, | |||
batch_sampler=RandomBatchSampler( | |||
batch_sampler=ReproduceBatchSampler( | |||
BatchSampler( | |||
sampler, batch_size=batch_size, drop_last=drop_last | |||
), | |||
@@ -306,7 +306,7 @@ class TestTorchDriverFunctions: | |||
res = TorchSingleDriver.get_dataloader_args(dataloader) | |||
assert isinstance(res.dataset, TorchNormalDataset) | |||
assert isinstance(res.batch_sampler, RandomBatchSampler) | |||
assert isinstance(res.batch_sampler, ReproduceBatchSampler) | |||
if shuffle: | |||
assert isinstance(res.sampler, torch.utils.data.RandomSampler) | |||
else: | |||
@@ -401,7 +401,7 @@ class TestSetDistReproDataloader: | |||
""" | |||
测试 set_dist_repro_dataloader 参数 `reproducible` 为 True 时的表现 | |||
当dist为字符串时,此时应该返回新的 dataloader,且如果原 sampler 为 torch.utils.data.RandomSampler(shuffle=True), | |||
只会替换 Sampler 为 RandomSampler;否则会替换 batch_sampler 为 RandomBatchSampler | |||
只会替换 Sampler 为 RandomSampler;否则会替换 batch_sampler 为 ReproduceBatchSampler | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=shuffle) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist="dist", reproducible=True) | |||
@@ -414,7 +414,7 @@ class TestSetDistReproDataloader: | |||
assert isinstance(replaced_loader.batch_sampler.sampler, RandomSampler) | |||
else: | |||
# 此时会替换 batch_sampler | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler.batch_sampler, BatchSampler) | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
@@ -428,11 +428,11 @@ class TestSetDistReproDataloader: | |||
应该返回新的 dataloader,并将 batch_sampler 替换为 dist 对应的 Sampler | |||
""" | |||
dataloader = DataLoader(self.dataset, batch_size=2, shuffle=shuffle) | |||
dist = RandomBatchSampler(BatchSampler(self.dataset, batch_size=4, drop_last=False), 4, False) | |||
dist = ReproduceBatchSampler(BatchSampler(self.dataset, batch_size=4, drop_last=False), 4, False) | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist=dist, reproducible=False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert replaced_loader.batch_sampler is dist | |||
self.check_set_dist_repro_dataloader(dataloader, replaced_loader, shuffle) | |||
@@ -466,7 +466,7 @@ class TestSetDistReproDataloader: | |||
replaced_loader = self.driver.set_dist_repro_dataloader(dataloader, dist="dist", reproducible=False) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert not (replaced_loader.batch_sampler is dataloader.batch_sampler) | |||
assert replaced_loader.batch_sampler.batch_size == dataloader.batch_sampler.batch_size | |||
assert replaced_loader.drop_last == dataloader.drop_last | |||
@@ -502,14 +502,14 @@ class TestSetDistReproDataloader: | |||
if idx >= num_consumed_batches: | |||
break | |||
already_seen_idx.update(batch) | |||
if isinstance(replaced_loader.batch_sampler, RandomBatchSampler): | |||
if isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler): | |||
sampler_states = replaced_loader.batch_sampler.state_dict() | |||
else: | |||
sampler_states = replaced_loader.batch_sampler.sampler.state_dict() | |||
# 重新加载,应该可以输出剩下的内容,且对于 TorchNormalDataset 来说,排序后应该是一个 range | |||
left_idxes = set() | |||
if isinstance(replaced_loader.batch_sampler, RandomBatchSampler): | |||
if isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler): | |||
batch_size = replaced_loader.batch_sampler.batch_size | |||
sampler_states["num_consumed_samples"] = num_consumed_batches * batch_size | |||
# 重新改造 dataloader | |||
@@ -613,7 +613,7 @@ def test_save_and_load_with_randombatchsampler(only_state_dict, fp16): | |||
# 2. 检查 batch_sampler 是否被正确地加载和替换 | |||
assert not (replaced_loader is dataloader) | |||
assert replaced_loader.batch_sampler is dataloader.batch_sampler | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert replaced_loader.batch_sampler.index_list == sampler_states["index_list"] | |||
assert replaced_loader.batch_sampler.num_consumed_samples == num_consumed_batches * 4 | |||
@@ -30,7 +30,7 @@ class SequenceDataSet: | |||
def check_replace_sampler(driver): | |||
# dist_sampler 可以选择的有['dist', 'unrepeatdist', None]或者是ReproducibleSampler,RandomBatchSampler | |||
# dist_sampler 可以选择的有['dist', 'unrepeatdist', None]或者是ReproducibleSampler,ReproduceBatchSampler | |||
# reproducible 是 True 和 False | |||
# 需要 check 返回的 sampler 和 dataloader 都不同了 | |||
@@ -4,7 +4,7 @@ from fastNLP.core.drivers.torch_driver.utils import ( | |||
replace_batch_sampler, | |||
replace_sampler, | |||
) | |||
from fastNLP.core.samplers import RandomBatchSampler, RandomSampler | |||
from fastNLP.core.samplers import ReproduceBatchSampler, RandomSampler | |||
from torch.utils.data import DataLoader, BatchSampler | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset | |||
@@ -14,12 +14,12 @@ from tests.helpers.datasets.torch_data import TorchNormalDataset | |||
def test_replace_batch_sampler(): | |||
dataset = TorchNormalDataset(10) | |||
dataloader = DataLoader(dataset, batch_size=32) | |||
batch_sampler = RandomBatchSampler(dataloader.batch_sampler, batch_size=16, drop_last=False) | |||
batch_sampler = ReproduceBatchSampler(dataloader.batch_sampler, batch_size=16, drop_last=False) | |||
replaced_loader = replace_batch_sampler(dataloader, batch_sampler) | |||
assert not (replaced_loader is dataloader) | |||
assert isinstance(replaced_loader.batch_sampler, RandomBatchSampler) | |||
assert isinstance(replaced_loader.batch_sampler, ReproduceBatchSampler) | |||
assert isinstance(replaced_loader.dataset, TorchNormalDataset) | |||
assert len(replaced_loader.dataset) == len(dataset) | |||
assert replaced_loader.batch_sampler.batch_size == 16 | |||
@@ -7,15 +7,20 @@ import copy | |||
import socket | |||
import pytest | |||
import numpy as np | |||
import torch | |||
import torch.distributed | |||
from torch.multiprocessing import Pool, set_start_method | |||
from sklearn.metrics import accuracy_score as sklearn_accuracy | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.core.metrics.accuracy import Accuracy | |||
from fastNLP.core.metrics.metric import Metric | |||
from .utils import find_free_network_port, setup_ddp, _assert_allclose | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
import torch.distributed | |||
from torch.multiprocessing import Pool, set_start_method | |||
else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as set_start_method | |||
set_start_method("spawn", force=True) | |||
@@ -26,7 +31,7 @@ pool = None | |||
def _test(local_rank: int, | |||
world_size: int, | |||
device: torch.device, | |||
device: "torch.device", | |||
dataset: DataSet, | |||
metric_class: Type[Metric], | |||
metric_kwargs: Dict[str, Any], | |||
@@ -2,18 +2,23 @@ from functools import partial | |||
import copy | |||
import pytest | |||
import torch | |||
import numpy as np | |||
from torch.multiprocessing import Pool, set_start_method | |||
from fastNLP.core.metrics import ClassifyFPreRecMetric | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
from .utils import find_free_network_port, setup_ddp | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
from torch.multiprocessing import Pool, set_start_method | |||
else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as set_start_method | |||
set_start_method("spawn", force=True) | |||
def _test(local_rank: int, world_size: int, device: torch.device, | |||
def _test(local_rank: int, world_size: int, device: "torch.device", | |||
dataset: DataSet, metric_class, metric_kwargs, metric_result): | |||
metric = metric_class(**metric_kwargs) | |||
# dataset 也类似(每个进程有自己的一个) | |||
@@ -5,16 +5,21 @@ import os, sys | |||
import copy | |||
from functools import partial | |||
import torch | |||
import torch.distributed | |||
import numpy as np | |||
import socket | |||
from torch.multiprocessing import Pool, set_start_method | |||
# from multiprocessing import Pool, set_start_method | |||
from fastNLP.core.vocabulary import Vocabulary | |||
from fastNLP.core.metrics import SpanFPreRecMetric | |||
from fastNLP.core.dataset import DataSet | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
from .utils import find_free_network_port, setup_ddp | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
import torch.distributed | |||
from torch.multiprocessing import Pool, set_start_method | |||
else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as set_start_method | |||
set_start_method("spawn", force=True) | |||
@@ -44,7 +49,7 @@ pool = None | |||
def _test(local_rank: int, | |||
world_size: int, | |||
device: torch.device, | |||
device: "torch.device", | |||
dataset: DataSet, | |||
metric_class, | |||
metric_kwargs, | |||
@@ -2,9 +2,11 @@ import os, sys | |||
import socket | |||
from typing import Union | |||
import torch | |||
from torch import distributed | |||
import numpy as np | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
from torch import distributed | |||
def setup_ddp(rank: int, world_size: int, master_port: int) -> None: | |||
@@ -1,161 +1,131 @@ | |||
from array import array | |||
import numpy as np | |||
import pytest | |||
from itertools import chain | |||
from copy import deepcopy | |||
from array import array | |||
from tests.helpers.datasets.normal_data import NormalSampler, NormalBatchSampler | |||
from fastNLP.core.samplers import ReproduceBatchSampler, BucketedBatchSampler, RandomBatchSampler | |||
class TestReproducibleBatchSampler: | |||
def test_1(self): | |||
sampler = NormalSampler(num_of_data=100) # 这里是否是 batchsampler 不影响; | |||
reproduce_batch_sampler = ReproduceBatchSampler(sampler, batch_size=4, drop_last=False) | |||
forward_steps = 3 | |||
iterator = iter(reproduce_batch_sampler) | |||
i = 0 | |||
while i < forward_steps: | |||
next(iterator) | |||
i += 1 | |||
# 保存状态; | |||
state = reproduce_batch_sampler.state_dict() | |||
assert state == {"index_list": array("I", list(range(100))), | |||
"num_consumed_samples": forward_steps * 4, | |||
"sampler_type": "ReproduceBatchSampler"} | |||
# 重新生成一个 batchsampler 然后加载状态; | |||
sampler = NormalSampler(num_of_data=100) # 这里是否是 batchsampler 不影响; | |||
reproduce_batch_sampler = ReproduceBatchSampler(sampler, batch_size=4, drop_last=False) | |||
reproduce_batch_sampler.load_state_dict(state) | |||
real_res = [] | |||
supposed_res = (list(range(12, 16)), list(range(16, 20))) | |||
forward_steps = 2 | |||
iter_dataloader = iter(reproduce_batch_sampler) | |||
for _ in range(forward_steps): | |||
real_res.append(next(iter_dataloader)) | |||
for i in range(forward_steps): | |||
assert supposed_res[i] == real_res[i] | |||
# 改变 batchsize; | |||
sampler = NormalSampler(num_of_data=100) # 这里是否是 batchsampler 不影响; | |||
reproduce_batch_sampler = ReproduceBatchSampler(sampler, batch_size=7, drop_last=False) | |||
reproduce_batch_sampler.load_state_dict(state) | |||
real_res = [] | |||
supposed_res = (list(range(12, 19)), list(range(19, 26))) | |||
forward_steps = 2 | |||
iter_dataloader = iter(reproduce_batch_sampler) | |||
for _ in range(forward_steps): | |||
real_res.append(next(iter_dataloader)) | |||
for i in range(forward_steps): | |||
assert supposed_res[i] == real_res[i] | |||
# 断点重训的第二轮是否是一个完整的 dataloader; | |||
# 先把断点重训所在的那一个 epoch 跑完; | |||
begin_idx = 26 | |||
while True: | |||
try: | |||
data = next(iter_dataloader) | |||
_batch_size = len(data) | |||
assert data == list(range(begin_idx, begin_idx + _batch_size)) | |||
begin_idx += _batch_size | |||
except StopIteration: | |||
break | |||
# 开始新的一轮; | |||
begin_idx = 0 | |||
iter_dataloader = iter(reproduce_batch_sampler) | |||
while True: | |||
try: | |||
data = next(iter_dataloader) | |||
_batch_size = len(data) | |||
assert data == list(range(begin_idx, begin_idx + _batch_size)) | |||
begin_idx += _batch_size | |||
except StopIteration: | |||
break | |||
from fastNLP.core.samplers import RandomBatchSampler, BucketedBatchSampler | |||
from fastNLP.core.drivers.torch_driver.utils import replace_batch_sampler | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset | |||
# | |||
# class TestReproducibleBatchSampler: | |||
# # TODO 拆分测试,在这里只测试一个东西 | |||
# def test_torch_dataloader_1(self): | |||
# import torch | |||
# from torch.utils.data import DataLoader | |||
# # no shuffle | |||
# before_batch_size = 7 | |||
# dataset = TorchNormalDataset(num_of_data=100) | |||
# dataloader = DataLoader(dataset, batch_size=before_batch_size) | |||
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
# dataloader = replace_batch_sampler(dataloader, re_batchsampler) | |||
# | |||
# forward_steps = 3 | |||
# iter_dataloader = iter(dataloader) | |||
# for _ in range(forward_steps): | |||
# next(iter_dataloader) | |||
# | |||
# # 1. 保存状态 | |||
# _get_re_batchsampler = dataloader.batch_sampler | |||
# assert isinstance(_get_re_batchsampler, RandomBatchSampler) | |||
# state = _get_re_batchsampler.state_dict() | |||
# assert state == {"index_list": array("I", list(range(100))), "num_consumed_samples": forward_steps*before_batch_size, | |||
# "sampler_type": "RandomBatchSampler"} | |||
# | |||
# # 2. 断点重训,重新生成一个 dataloader; | |||
# # 不改变 batch_size; | |||
# dataloader = DataLoader(dataset, batch_size=before_batch_size) | |||
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
# re_batchsampler.load_state_dict(state) | |||
# dataloader = replace_batch_sampler(dataloader, re_batchsampler) | |||
# | |||
# real_res = [] | |||
# supposed_res = (torch.tensor(list(range(21, 28))), torch.tensor(list(range(28, 35)))) | |||
# forward_steps = 2 | |||
# iter_dataloader = iter(dataloader) | |||
# for _ in range(forward_steps): | |||
# real_res.append(next(iter_dataloader)) | |||
# | |||
# for i in range(forward_steps): | |||
# assert all(real_res[i] == supposed_res[i]) | |||
# | |||
# # 改变 batch_size; | |||
# after_batch_size = 3 | |||
# dataloader = DataLoader(dataset, batch_size=after_batch_size) | |||
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
# re_batchsampler.load_state_dict(state) | |||
# dataloader = replace_batch_sampler(dataloader, re_batchsampler) | |||
# | |||
# real_res = [] | |||
# supposed_res = (torch.tensor(list(range(21, 24))), torch.tensor(list(range(24, 27)))) | |||
# forward_steps = 2 | |||
# iter_dataloader = iter(dataloader) | |||
# for _ in range(forward_steps): | |||
# real_res.append(next(iter_dataloader)) | |||
# | |||
# for i in range(forward_steps): | |||
# assert all(real_res[i] == supposed_res[i]) | |||
# | |||
# # 断点重训的第二轮是否是一个完整的 dataloader; | |||
# # 先把断点重训所在的那一个 epoch 跑完; | |||
# begin_idx = 27 | |||
# while True: | |||
# try: | |||
# data = next(iter_dataloader) | |||
# _batch_size = len(data) | |||
# assert all(data == torch.tensor(list(range(begin_idx, begin_idx + _batch_size)))) | |||
# begin_idx += _batch_size | |||
# except StopIteration: | |||
# break | |||
# | |||
# # 开始新的一轮; | |||
# begin_idx = 0 | |||
# iter_dataloader = iter(dataloader) | |||
# while True: | |||
# try: | |||
# data = next(iter_dataloader) | |||
# _batch_size = len(data) | |||
# assert all(data == torch.tensor(list(range(begin_idx, begin_idx + _batch_size)))) | |||
# begin_idx += _batch_size | |||
# except StopIteration: | |||
# break | |||
# | |||
# def test_torch_dataloader_2(self): | |||
# # 测试新的一轮的 index list 是重新生成的,而不是沿用上一轮的; | |||
# from torch.utils.data import DataLoader | |||
# # no shuffle | |||
# before_batch_size = 7 | |||
# dataset = TorchNormalDataset(num_of_data=100) | |||
# # 开启 shuffle,来检验断点重训后的第二轮的 index list 是不是重新生成的; | |||
# dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True) | |||
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
# dataloader = replace_batch_sampler(dataloader, re_batchsampler) | |||
# | |||
# # 将一轮的所有数据保存下来,看是否恢复的是正确的; | |||
# all_supposed_data = [] | |||
# forward_steps = 3 | |||
# iter_dataloader = iter(dataloader) | |||
# for _ in range(forward_steps): | |||
# all_supposed_data.extend(next(iter_dataloader).tolist()) | |||
# | |||
# # 1. 保存状态 | |||
# _get_re_batchsampler = dataloader.batch_sampler | |||
# assert isinstance(_get_re_batchsampler, RandomBatchSampler) | |||
# state = _get_re_batchsampler.state_dict() | |||
# | |||
# # 2. 断点重训,重新生成一个 dataloader; | |||
# # 不改变 batch_size; | |||
# dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True) | |||
# re_batchsampler = RandomBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
# re_batchsampler.load_state_dict(state) | |||
# dataloader = replace_batch_sampler(dataloader, re_batchsampler) | |||
# | |||
# # 先把这一轮的数据过完; | |||
# pre_index_list = dataloader.batch_sampler.state_dict()["index_list"] | |||
# while True: | |||
# try: | |||
# all_supposed_data.extend(next(iter_dataloader).tolist()) | |||
# except StopIteration: | |||
# break | |||
# assert all_supposed_data == list(pre_index_list) | |||
# | |||
# # 重新开启新的一轮; | |||
# for _ in range(3): | |||
# iter_dataloader = iter(dataloader) | |||
# res = [] | |||
# while True: | |||
# try: | |||
# res.append(next(iter_dataloader)) | |||
# except StopIteration: | |||
# break | |||
# | |||
# def test_3(self): | |||
# import torch | |||
# from torch.utils.data import DataLoader | |||
# before_batch_size = 7 | |||
# dataset = TorchNormalDataset(num_of_data=100) | |||
# # 开启 shuffle,来检验断点重训后的第二轮的 index list 是不是重新生成的; | |||
# dataloader = DataLoader(dataset, batch_size=before_batch_size) | |||
# | |||
# for idx, data in enumerate(dataloader): | |||
# if idx > 3: | |||
# break | |||
# | |||
# iterator = iter(dataloader) | |||
# for each in iterator: | |||
# pass | |||
def test_2(self): | |||
# 测试新的一轮的 index list 是重新生成的,而不是沿用上一轮的; | |||
before_batch_size = 7 | |||
sampler = NormalSampler(num_of_data=100) | |||
# 开启 shuffle,来检验断点重训后的第二轮的 index list 是不是重新生成的; | |||
reproduce_batch_sampler = ReproduceBatchSampler(sampler, before_batch_size, drop_last=False) | |||
# 将一轮的所有数据保存下来,看是否恢复的是正确的; | |||
all_supposed_data = [] | |||
forward_steps = 3 | |||
iter_dataloader = iter(reproduce_batch_sampler) | |||
for _ in range(forward_steps): | |||
all_supposed_data.extend(next(iter_dataloader)) | |||
# 1. 保存状态 | |||
state = reproduce_batch_sampler.state_dict() | |||
# 2. 断点重训,重新生成一个 dataloader; | |||
# 不改变 batch_size; | |||
sampler = NormalSampler(num_of_data=100, shuffle=True) | |||
reproduce_batch_sampler = ReproduceBatchSampler(sampler, before_batch_size, drop_last=False) | |||
reproduce_batch_sampler.load_state_dict(state) | |||
# 先把这一轮的数据过完; | |||
pre_index_list = reproduce_batch_sampler.state_dict()["index_list"] | |||
iter_dataloader = iter(reproduce_batch_sampler) | |||
while True: | |||
try: | |||
all_supposed_data.extend(next(iter_dataloader)) | |||
except StopIteration: | |||
break | |||
assert all_supposed_data == list(pre_index_list) | |||
# 重新开启新的一轮; | |||
for _ in range(3): | |||
iter_dataloader = iter(reproduce_batch_sampler) | |||
res = [] | |||
while True: | |||
try: | |||
res.extend(next(iter_dataloader)) | |||
except StopIteration: | |||
break | |||
assert res != all_supposed_data | |||
class DatasetWithVaryLength: | |||
@@ -511,3 +481,313 @@ class TestBucketedBatchSampler: | |||
already_seen_set.update(batch) | |||
assert len(already_seen_set)==len(dataset) if drop_last is False else len(already_seen_set)<=len(dataset) | |||
class TestRandomBatchSampler: | |||
@pytest.mark.parametrize('shuffle', [True, False]) | |||
@pytest.mark.parametrize('drop_last', [True, False]) | |||
@pytest.mark.parametrize('num', [2, 7, 14, 15, 70, 71]) | |||
def test_single_num_batch(self, shuffle, drop_last, num): | |||
# 数量不够不报错 | |||
for num in [2, 7, 14, 15, 70, 71]: | |||
dataset = DatasetWithVaryLength(num_of_data=num) | |||
before_batch_size = 7 | |||
re_batchsampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=before_batch_size, | |||
drop_last=drop_last, | |||
shuffle=shuffle) | |||
count = len(list(iter(re_batchsampler))) | |||
if drop_last: | |||
assert count==num//before_batch_size, num | |||
else: | |||
assert count==(num+before_batch_size-1)//before_batch_size, num | |||
@pytest.mark.parametrize('shuffle', [True, False]) | |||
@pytest.mark.parametrize('drop_last', [True, False]) | |||
def test_single(self, shuffle, drop_last): | |||
before_batch_size = 7 | |||
num_batch_per_bucket = 4 # 那么任意 batch 内的长度差值不应该超过4 | |||
dataset = DatasetWithVaryLength(num_of_data=1000) | |||
re_batchsampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=before_batch_size, | |||
drop_last=drop_last, | |||
shuffle=shuffle) | |||
re_batchsampler.set_epoch(0) | |||
forward_steps = 10 | |||
iterator = iter(re_batchsampler) | |||
already_generate_indices = set() | |||
for _ in range(forward_steps): | |||
batch = next(iterator) | |||
already_generate_indices.update(batch) | |||
# 1. 保存状态 | |||
state = re_batchsampler.state_dict() | |||
# 2. 断点重训,继续训练 | |||
re_batchsampler2 = RandomBatchSampler(dataset, length=dataset.data, batch_size=before_batch_size, | |||
drop_last=drop_last, | |||
shuffle=shuffle) | |||
re_batchsampler2.load_state_dict(state) | |||
re_batchsampler2.set_epoch(0) | |||
new_already_generate_indices = set() | |||
mask = np.ones(len(dataset), dtype=bool) | |||
mask[list(already_generate_indices)] = 0 | |||
indices = np.arange(len(dataset))[mask] | |||
max_diff = -1 | |||
for i in range(len(indices)-before_batch_size * num_batch_per_bucket): | |||
max_diff = max(max_diff, indices[i+before_batch_size * num_batch_per_bucket]-indices[i]) | |||
for batch in re_batchsampler2: | |||
for b in batch: | |||
assert b not in already_generate_indices | |||
new_already_generate_indices.update(batch) | |||
if drop_last is False: | |||
assert len(new_already_generate_indices.union(already_generate_indices))==len(dataset) | |||
# 改变 batch_size; | |||
after_batch_size = 3 | |||
re_batchsampler3 = RandomBatchSampler(dataset, length=dataset.data, batch_size=after_batch_size, | |||
drop_last=drop_last, | |||
shuffle=shuffle) | |||
re_batchsampler3.load_state_dict(state) | |||
re_batchsampler3.set_epoch(0) | |||
count = 0 | |||
mask = np.ones(len(dataset), dtype=bool) | |||
mask[list(already_generate_indices)] = 0 | |||
indices = np.arange(len(dataset))[mask] | |||
for batch in re_batchsampler3: | |||
for b in batch: | |||
assert b not in already_generate_indices | |||
already_generate_indices.update(batch) | |||
count += 1 | |||
if count > 5: | |||
break | |||
# 再 save ,不允许再上个epoch没结束继续sample | |||
after_batch_size = 5 | |||
with pytest.raises(RuntimeError): | |||
state = re_batchsampler3.state_dict() | |||
for batch in re_batchsampler3: # consume all, 这样才能save | |||
pass | |||
already_generate_indices = set() | |||
count = 0 | |||
for batch in re_batchsampler3: # 重新开始 | |||
for b in batch: | |||
assert b not in already_generate_indices | |||
already_generate_indices.update(batch) | |||
count += 1 | |||
if count > 5: | |||
break | |||
state = re_batchsampler3.state_dict() | |||
# 这里的 drop_last 为 False,需要最终是所有 sample | |||
re_batchsampler4 = RandomBatchSampler(dataset, length=dataset.data, batch_size=after_batch_size, | |||
drop_last=False, | |||
shuffle=shuffle) | |||
re_batchsampler4.load_state_dict(state) | |||
re_batchsampler4.set_epoch(0) | |||
mask = np.ones(len(dataset), dtype=bool) | |||
mask[list(already_generate_indices)] = 0 | |||
for batch in re_batchsampler4: | |||
for b in batch: | |||
assert b not in already_generate_indices | |||
already_generate_indices.update(batch) | |||
assert len(already_generate_indices) == len(dataset) | |||
@pytest.mark.parametrize('shuffle', [True, False]) | |||
@pytest.mark.parametrize('drop_last', [True, False]) | |||
@pytest.mark.parametrize('pad', [True, False]) | |||
def test_multi(self, shuffle, drop_last, pad): | |||
# def test_multi(self, shuffle=True, drop_last=False, pad=False): | |||
# no shuffle | |||
num_replica = 2 | |||
dataset = DatasetWithVaryLength(num_of_data=1000) | |||
batch_size = 5 | |||
num_batch_per_bucket = 10 | |||
lengths = [] | |||
rank0_already_seen_indexes = None | |||
max_diff = num_batch_per_bucket * batch_size * num_replica | |||
for rank in range(num_replica): | |||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size = batch_size, | |||
shuffle = shuffle, drop_last=drop_last) | |||
sampler.set_epoch(0) | |||
sampler.set_distributed(num_replica, rank=rank, pad=pad) | |||
lengths.append(len(sampler)) | |||
already_seen_indexes = set() | |||
repeat_count = 0 | |||
for batch in sampler: | |||
for b in batch: | |||
repeat_count += int(b in already_seen_indexes) | |||
if rank0_already_seen_indexes: # 不能交叉出现 | |||
assert b not in rank0_already_seen_indexes | |||
already_seen_indexes.update(batch) | |||
if rank0_already_seen_indexes is None: | |||
rank0_already_seen_indexes = already_seen_indexes | |||
if pad: # 应该允许重复一次 | |||
assert repeat_count<=1 | |||
else: | |||
assert repeat_count==0 | |||
assert len(set(lengths))==1, lengths # 每个进程的batch数量一致 | |||
# 多进程的保存 | |||
already_seen_indexes = set() | |||
for rank in range(num_replica): | |||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size = batch_size, | |||
shuffle = shuffle, drop_last=drop_last) | |||
sampler.set_epoch(0) | |||
sampler.set_distributed(num_replica, rank=rank, pad=pad) | |||
lengths.append(len(sampler)) | |||
count = 0 | |||
for batch in sampler: | |||
already_seen_indexes.update(batch) | |||
if count>5: | |||
break | |||
count += 1 | |||
state = sampler.state_dict() | |||
# 切换成单机 | |||
new_batch_size = 6 | |||
num_batch_per_bucket = 3 | |||
new_sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=new_batch_size, | |||
shuffle=shuffle, drop_last=drop_last) | |||
new_sampler.load_state_dict(state) | |||
repeat_count = 0 | |||
new_already_seen_indexes = set(list(already_seen_indexes)) | |||
mask = np.ones(len(dataset), dtype=bool) | |||
mask[list(already_seen_indexes)] = 0 | |||
indices = np.arange(len(dataset))[mask] | |||
for batch in new_sampler: | |||
for b in batch: | |||
repeat_count += int(b in new_already_seen_indexes) | |||
new_already_seen_indexes.update(batch) | |||
if pad: # 应该允许重复一次 | |||
assert repeat_count <= 1 | |||
else: | |||
assert repeat_count == 0 | |||
if drop_last is False: # 如果没有drop应该相等 | |||
assert len(new_already_seen_indexes)==len(dataset) | |||
# 测试替换卡的数量。 | |||
num_replica = 3 | |||
new_sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=new_batch_size, | |||
shuffle=shuffle, drop_last=drop_last) | |||
new_sampler.set_epoch(0) | |||
new_sampler.load_state_dict(state) | |||
new_sampler.set_distributed(num_replicas=num_replica, rank=1, pad=pad) | |||
repeat_count = 0 | |||
mask = np.ones(len(dataset), dtype=bool) | |||
mask[list(already_seen_indexes)] = 0 | |||
indices = np.arange(len(dataset))[mask] | |||
for batch in new_sampler: | |||
for b in batch: | |||
repeat_count += int(b in already_seen_indexes) | |||
if pad: # 应该允许重复一次 | |||
assert repeat_count <= 1 | |||
else: | |||
assert repeat_count == 0 | |||
@pytest.mark.parametrize('shuffle', [True, False]) | |||
@pytest.mark.parametrize('drop_last', [True, False]) | |||
@pytest.mark.parametrize('pad', [True, False]) | |||
@pytest.mark.parametrize('num_samples', [13, 100, 623, 1000]) | |||
@pytest.mark.parametrize('num_replicas', [2, 3]) | |||
def test_multi_same_bucket(self, shuffle, drop_last, pad, num_samples, num_replicas): | |||
# def test_multi_same_bucket(self, shuffle=True, drop_last=True, pad=True, num_samples=623, num_replicas=2): | |||
dataset = DatasetWithVaryLength(num_of_data=num_samples) | |||
batch_size = 6 | |||
if num_replicas*batch_size > num_samples: | |||
return | |||
num_batch_per_bucket = 10 | |||
samplers = [] | |||
lengths = [] | |||
for i in range(num_replicas): | |||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=batch_size, | |||
shuffle=shuffle, drop_last=drop_last) | |||
sampler.set_distributed(num_replicas, rank=i, pad=pad) | |||
sampler.set_epoch(0) | |||
samplers.append(sampler) | |||
lengths.append(len(list(iter(sampler)))) | |||
assert len(set(lengths))==1 | |||
@pytest.mark.parametrize('shuffle', [True, False]) | |||
@pytest.mark.parametrize('drop_last', [True, False]) | |||
@pytest.mark.parametrize('pad', [True, False]) | |||
@pytest.mark.parametrize('num_samples', [13, 100, 623, 1000]) | |||
@pytest.mark.parametrize('num_replicas', [1, 2, 3]) | |||
def test_multi_save_load(self, shuffle, drop_last, pad, num_samples, num_replicas): | |||
""" | |||
测试是否能够正确地恢复使用过的(forward)数据 | |||
:return: | |||
""" | |||
batch_size = 6 | |||
dataset = DatasetWithVaryLength(num_of_data=num_samples) | |||
samplers = [] | |||
num_consumed_samples_array = list(range(0, num_samples+num_replicas, num_replicas)) | |||
for i in range(num_replicas): | |||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=batch_size, | |||
shuffle=shuffle, drop_last=drop_last) | |||
sampler.set_distributed(num_replicas=num_replicas, rank=i, pad=pad) | |||
samplers.append(sampler) | |||
count = 0 | |||
already_seen_sets = [set()] | |||
already_seen_set = set() | |||
for batchs in zip(*samplers): | |||
batch = chain(*batchs) | |||
already_seen_set.update(batch) | |||
already_seen_sets.append(deepcopy(already_seen_set)) | |||
count += 1 | |||
if count > 3: | |||
break | |||
states = samplers[0].state_dict() | |||
for i in range(len(already_seen_sets)): | |||
states['num_consumed_samples'] = num_consumed_samples_array[i] | |||
sampler = BucketedBatchSampler(dataset, length=dataset.data, batch_size=batch_size+1, | |||
shuffle=shuffle, drop_last=drop_last) | |||
sampler.set_epoch(0) | |||
already_seen_set = deepcopy(already_seen_sets[i]) | |||
for batch in sampler: | |||
already_seen_set.update(batch) | |||
assert len(already_seen_set) == len(dataset) if drop_last is False else len(already_seen_set) <= len( | |||
dataset) | |||
# 测试保存之后再次保存 | |||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=batch_size + 1, | |||
shuffle=shuffle, | |||
drop_last=drop_last) | |||
sampler.set_epoch(0) | |||
states['num_consumed_samples'] = num_consumed_samples_array[2] | |||
if len(already_seen_sets)<3: | |||
return | |||
already_seen_set = already_seen_sets[2] | |||
count = 0 | |||
for batch in sampler: | |||
already_seen_set.update(batch) | |||
count += 1 | |||
if count > 6: | |||
break | |||
states = sampler.state_dict() | |||
num_consumed_samples_array = list(range(len(dataset))) | |||
states['num_consumed_samples'] = num_consumed_samples_array[count] | |||
sampler = RandomBatchSampler(dataset, length=dataset.data, batch_size=batch_size//2, | |||
shuffle=shuffle, | |||
drop_last=drop_last) | |||
sampler.load_state_dict(states) | |||
sampler.set_epoch(0) | |||
for batch in sampler: | |||
already_seen_set.update(batch) | |||
assert len(already_seen_set)==len(dataset) if drop_last is False else len(already_seen_set)<=len(dataset) |
@@ -0,0 +1,141 @@ | |||
from array import array | |||
import torch | |||
from torch.utils.data import DataLoader | |||
import pytest | |||
from fastNLP.core.samplers import ReproduceBatchSampler | |||
from fastNLP.core.drivers.torch_driver.utils import replace_batch_sampler | |||
from tests.helpers.datasets.torch_data import TorchNormalDataset | |||
@pytest.mark.torch | |||
class TestReproducibleBatchSamplerTorch: | |||
def test_torch_dataloader_1(self): | |||
# no shuffle | |||
before_batch_size = 7 | |||
dataset = TorchNormalDataset(num_of_data=100) | |||
dataloader = DataLoader(dataset, batch_size=before_batch_size) | |||
re_batchsampler = ReproduceBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
dataloader = replace_batch_sampler(dataloader, re_batchsampler) | |||
forward_steps = 3 | |||
iter_dataloader = iter(dataloader) | |||
for _ in range(forward_steps): | |||
next(iter_dataloader) | |||
# 1. 保存状态 | |||
_get_re_batchsampler = dataloader.batch_sampler | |||
assert isinstance(_get_re_batchsampler, ReproduceBatchSampler) | |||
state = _get_re_batchsampler.state_dict() | |||
assert state == {"index_list": array("I", list(range(100))), "num_consumed_samples": forward_steps*before_batch_size, | |||
"sampler_type": "ReproduceBatchSampler"} | |||
# 2. 断点重训,重新生成一个 dataloader; | |||
# 不改变 batch_size; | |||
dataloader = DataLoader(dataset, batch_size=before_batch_size) | |||
re_batchsampler = ReproduceBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
re_batchsampler.load_state_dict(state) | |||
dataloader = replace_batch_sampler(dataloader, re_batchsampler) | |||
real_res = [] | |||
supposed_res = (torch.tensor(list(range(21, 28))), torch.tensor(list(range(28, 35)))) | |||
forward_steps = 2 | |||
iter_dataloader = iter(dataloader) | |||
for _ in range(forward_steps): | |||
real_res.append(next(iter_dataloader)) | |||
for i in range(forward_steps): | |||
assert all(real_res[i] == supposed_res[i]) | |||
# 改变 batch_size; | |||
after_batch_size = 3 | |||
dataloader = DataLoader(dataset, batch_size=after_batch_size) | |||
re_batchsampler = ReproduceBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
re_batchsampler.load_state_dict(state) | |||
dataloader = replace_batch_sampler(dataloader, re_batchsampler) | |||
real_res = [] | |||
supposed_res = (torch.tensor(list(range(21, 24))), torch.tensor(list(range(24, 27)))) | |||
forward_steps = 2 | |||
iter_dataloader = iter(dataloader) | |||
for _ in range(forward_steps): | |||
real_res.append(next(iter_dataloader)) | |||
for i in range(forward_steps): | |||
assert all(real_res[i] == supposed_res[i]) | |||
# 断点重训的第二轮是否是一个完整的 dataloader; | |||
# 先把断点重训所在的那一个 epoch 跑完; | |||
begin_idx = 27 | |||
while True: | |||
try: | |||
data = next(iter_dataloader) | |||
_batch_size = len(data) | |||
assert all(data == torch.tensor(list(range(begin_idx, begin_idx + _batch_size)))) | |||
begin_idx += _batch_size | |||
except StopIteration: | |||
break | |||
# 开始新的一轮; | |||
begin_idx = 0 | |||
iter_dataloader = iter(dataloader) | |||
while True: | |||
try: | |||
data = next(iter_dataloader) | |||
_batch_size = len(data) | |||
assert all(data == torch.tensor(list(range(begin_idx, begin_idx + _batch_size)))) | |||
begin_idx += _batch_size | |||
except StopIteration: | |||
break | |||
def test_torch_dataloader_2(self): | |||
# 测试新的一轮的 index list 是重新生成的,而不是沿用上一轮的; | |||
from torch.utils.data import DataLoader | |||
before_batch_size = 7 | |||
dataset = TorchNormalDataset(num_of_data=100) | |||
# 开启 shuffle,来检验断点重训后的第二轮的 index list 是不是重新生成的; | |||
dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True) | |||
re_batchsampler = ReproduceBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
dataloader = replace_batch_sampler(dataloader, re_batchsampler) | |||
# 将一轮的所有数据保存下来,看是否恢复的是正确的; | |||
all_supposed_data = [] | |||
forward_steps = 3 | |||
iter_dataloader = iter(dataloader) | |||
for _ in range(forward_steps): | |||
all_supposed_data.extend(next(iter_dataloader).tolist()) | |||
# 1. 保存状态 | |||
_get_re_batchsampler = dataloader.batch_sampler | |||
assert isinstance(_get_re_batchsampler, ReproduceBatchSampler) | |||
state = _get_re_batchsampler.state_dict() | |||
# 2. 断点重训,重新生成一个 dataloader; | |||
# 不改变 batch_size; | |||
dataloader = DataLoader(dataset, batch_size=before_batch_size, shuffle=True) | |||
re_batchsampler = ReproduceBatchSampler(dataloader.batch_sampler, dataloader.batch_size, drop_last=False) | |||
re_batchsampler.load_state_dict(state) | |||
dataloader = replace_batch_sampler(dataloader, re_batchsampler) | |||
iter_dataloader = iter(dataloader) | |||
# 先把这一轮的数据过完; | |||
pre_index_list = dataloader.batch_sampler.state_dict()["index_list"] | |||
while True: | |||
try: | |||
all_supposed_data.extend(next(iter_dataloader).tolist()) | |||
except StopIteration: | |||
break | |||
assert all_supposed_data == list(pre_index_list) | |||
# 重新开启新的一轮; | |||
for _ in range(3): | |||
iter_dataloader = iter(dataloader) | |||
res = [] | |||
while True: | |||
try: | |||
res.extend(next(iter_dataloader).tolist()) | |||
except StopIteration: | |||
break | |||
assert res != all_supposed_data | |||
@@ -3,6 +3,7 @@ import pytest | |||
import subprocess | |||
from io import StringIO | |||
import sys | |||
sys.path.append(os.path.join(os.path.dirname(__file__), '../../..')) | |||
from fastNLP.core.utils.cache_results import cache_results | |||
from fastNLP.core import rank_zero_rm | |||
@@ -1,4 +1,5 @@ | |||
import os | |||
import pytest | |||
from fastNLP.envs.set_backend import dump_fastnlp_backend | |||
from tests.helpers.utils import Capturing | |||
@@ -9,7 +10,7 @@ def test_dump_fastnlp_envs(): | |||
filepath = None | |||
try: | |||
with Capturing() as output: | |||
dump_fastnlp_backend() | |||
dump_fastnlp_backend(backend="torch") | |||
filepath = os.path.join(os.path.expanduser('~'), '.fastNLP', 'envs', os.environ['CONDA_DEFAULT_ENV']+'.json') | |||
assert filepath in output[0] | |||
assert os.path.exists(filepath) | |||
@@ -1,7 +1,9 @@ | |||
import torch | |||
from copy import deepcopy | |||
from fastNLP.core.callbacks.callback import Callback | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
class RecordAccumulationStepsCallback_Torch(Callback): | |||
@@ -1,13 +1,25 @@ | |||
import numpy as np | |||
import random | |||
class NormalIterator: | |||
def __init__(self, num_of_data=1000): | |||
class NormalSampler: | |||
def __init__(self, num_of_data=1000, shuffle=False): | |||
self._num_of_data = num_of_data | |||
self._data = list(range(num_of_data)) | |||
if shuffle: | |||
random.shuffle(self._data) | |||
self.shuffle = shuffle | |||
self._index = 0 | |||
self.need_reinitialize = False | |||
def __iter__(self): | |||
if self.need_reinitialize: | |||
self._index = 0 | |||
if self.shuffle: | |||
random.shuffle(self._data) | |||
else: | |||
self.need_reinitialize = True | |||
return self | |||
def __next__(self): | |||
@@ -15,12 +27,45 @@ class NormalIterator: | |||
raise StopIteration | |||
_data = self._data[self._index] | |||
self._index += 1 | |||
return self._data | |||
return _data | |||
def __len__(self): | |||
return self._num_of_data | |||
class NormalBatchSampler: | |||
def __init__(self, sampler, batch_size: int, drop_last: bool) -> None: | |||
# Since collections.abc.Iterable does not check for `__getitem__`, which | |||
# is one way for an object to be an iterable, we don't do an `isinstance` | |||
# check here. | |||
if not isinstance(batch_size, int) or isinstance(batch_size, bool) or \ | |||
batch_size <= 0: | |||
raise ValueError("batch_size should be a positive integer value, " | |||
"but got batch_size={}".format(batch_size)) | |||
if not isinstance(drop_last, bool): | |||
raise ValueError("drop_last should be a boolean value, but got " | |||
"drop_last={}".format(drop_last)) | |||
self.sampler = sampler | |||
self.batch_size = batch_size | |||
self.drop_last = drop_last | |||
def __iter__(self): | |||
batch = [] | |||
for idx in self.sampler: | |||
batch.append(idx) | |||
if len(batch) == self.batch_size: | |||
yield batch | |||
batch = [] | |||
if len(batch) > 0 and not self.drop_last: | |||
yield batch | |||
def __len__(self) -> int: | |||
if self.drop_last: | |||
return len(self.sampler) // self.batch_size | |||
else: | |||
return (len(self.sampler) + self.batch_size - 1) // self.batch_size | |||
class RandomDataset: | |||
def __init__(self, num_data=10): | |||
self.data = np.random.rand(num_data) | |||
@@ -29,4 +74,7 @@ class RandomDataset: | |||
return len(self.data) | |||
def __getitem__(self, item): | |||
return self.data[item] | |||
return self.data[item] | |||
@@ -1,7 +1,11 @@ | |||
import torch | |||
from functools import reduce | |||
from torch.utils.data import Dataset, DataLoader, DistributedSampler | |||
from torch.utils.data.sampler import SequentialSampler, BatchSampler | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
from torch.utils.data import Dataset, DataLoader, DistributedSampler | |||
from torch.utils.data.sampler import SequentialSampler, BatchSampler | |||
else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as Dataset | |||
class TorchNormalDataset(Dataset): | |||
@@ -1,9 +1,14 @@ | |||
import torch | |||
import torch.nn as nn | |||
from fastNLP.envs.imports import _NEED_IMPORT_TORCH | |||
if _NEED_IMPORT_TORCH: | |||
import torch | |||
from torch.nn import Module | |||
import torch.nn as nn | |||
else: | |||
from fastNLP.core.utils.dummy_class import DummyClass as Module | |||
# 1. 最为基础的分类模型 | |||
class TorchNormalModel_Classification_1(nn.Module): | |||
class TorchNormalModel_Classification_1(Module): | |||
""" | |||
单独实现 train_step 和 evaluate_step; | |||
""" | |||
@@ -38,7 +43,7 @@ class TorchNormalModel_Classification_1(nn.Module): | |||
return {"preds": x, "target": y} | |||
class TorchNormalModel_Classification_2(nn.Module): | |||
class TorchNormalModel_Classification_2(Module): | |||
""" | |||
只实现一个 forward 函数,来测试用户自己在外面初始化 DDP 的场景; | |||
""" | |||
@@ -62,7 +67,7 @@ class TorchNormalModel_Classification_2(nn.Module): | |||
return {"loss": loss, "preds": x, "target": y} | |||
class TorchNormalModel_Classification_3(nn.Module): | |||
class TorchNormalModel_Classification_3(Module): | |||
""" | |||
只实现一个 forward 函数,来测试用户自己在外面初始化 DDP 的场景; | |||
关闭 auto_param_call,forward 只有一个 batch 参数; | |||
@@ -0,0 +1,6 @@ | |||
[pytest] | |||
markers = | |||
torch | |||
paddle | |||
jittor | |||
torchpaddle |