| @@ -4,13 +4,13 @@ __all__ = [ | |||
| ] | |||
| from typing import Union | |||
| import warnings | |||
| import numpy as np | |||
| from fastNLP.core.metrics.metric import Metric | |||
| from fastNLP.core.metrics.backend import Backend | |||
| from fastNLP.core.utils.seq_len_to_mask import seq_len_to_mask | |||
| from fastNLP.core.log import logger | |||
| class Accuracy(Metric): | |||
| @@ -69,7 +69,7 @@ class Accuracy(Metric): | |||
| elif pred.ndim == target.ndim + 1: | |||
| pred = pred.argmax(axis=-1) | |||
| if seq_len is None and target.ndim > 1: | |||
| warnings.warn("You are not passing `seq_len` to exclude pad when calculate accuracy.") | |||
| logger.warn("You are not passing `seq_len` to exclude pad when calculate accuracy.") | |||
| else: | |||
| raise RuntimeError(f"when pred have size:{pred.shape}, target should have size: {pred.shape} or " | |||
| @@ -4,7 +4,6 @@ __all__ = [ | |||
| from typing import Union, List | |||
| from collections import Counter | |||
| import warnings | |||
| import numpy as np | |||
| from .metric import Metric | |||
| @@ -12,7 +11,7 @@ from .backend import Backend | |||
| from fastNLP.core.vocabulary import Vocabulary | |||
| from fastNLP.core.utils.seq_len_to_mask import seq_len_to_mask | |||
| from .utils import _compute_f_pre_rec | |||
| from fastNLP.core.log import logger | |||
| class ClassifyFPreRecMetric(Metric): | |||
| def __init__(self, tag_vocab: Vocabulary = None, ignore_labels: List[str] = None, | |||
| @@ -157,7 +156,7 @@ class ClassifyFPreRecMetric(Metric): | |||
| elif pred.ndim == target.ndim + 1: | |||
| pred = pred.argmax(axis=-1) | |||
| if seq_len is None and target.ndim > 1: | |||
| warnings.warn("You are not passing `seq_len` to exclude pad when calculate accuracy.") | |||
| logger.warn("You are not passing `seq_len` to exclude pad when calculate accuracy.") | |||
| else: | |||
| raise RuntimeError(f"when pred have " | |||
| f"size:{pred.shape}, target should have size: {pred.shape} or " | |||
| @@ -3,12 +3,12 @@ __all__ = [ | |||
| ] | |||
| from typing import Union, List, Optional | |||
| import warnings | |||
| from collections import Counter | |||
| from fastNLP.core.metrics.backend import Backend | |||
| from fastNLP.core.metrics.metric import Metric | |||
| from fastNLP.core.vocabulary import Vocabulary | |||
| from fastNLP.core.log import logger | |||
| from .utils import _compute_f_pre_rec | |||
| @@ -39,7 +39,7 @@ def _check_tag_vocab_and_encoding_type(tag_vocab: Union[Vocabulary, dict], encod | |||
| f"encoding_type." | |||
| tags = tags.replace(tag, '') # 删除该值 | |||
| if tags: # 如果不为空,说明出现了未使用的tag | |||
| warnings.warn(f"Tag:{tags} in encoding type:{encoding_type} is not presented in your Vocabulary. Check your " | |||
| logger.warn(f"Tag:{tags} in encoding type:{encoding_type} is not presented in your Vocabulary. Check your " | |||
| "encoding_type.") | |||
| @@ -2,7 +2,6 @@ import functools | |||
| import inspect | |||
| from inspect import Parameter | |||
| import dataclasses | |||
| import warnings | |||
| from dataclasses import is_dataclass | |||
| from copy import deepcopy | |||
| from collections import defaultdict, OrderedDict | |||
| @@ -555,7 +554,7 @@ def deprecated(help_message: Optional[str] = None): | |||
| def wrapper(*args, **kwargs): | |||
| func_hash = hash(deprecated_function) | |||
| if func_hash not in _emitted_deprecation_warnings: | |||
| warnings.warn(warning_msg, category=FutureWarning, stacklevel=2) | |||
| logger.warn(warning_msg, category=FutureWarning, stacklevel=2) | |||
| _emitted_deprecation_warnings.add(func_hash) | |||
| return deprecated_function(*args, **kwargs) | |||
| @@ -7,7 +7,6 @@ __all__ = [ | |||
| "StaticEmbedding" | |||
| ] | |||
| import os | |||
| import warnings | |||
| from collections import defaultdict | |||
| from copy import deepcopy | |||
| import json | |||
| @@ -15,6 +14,7 @@ from typing import Union | |||
| import numpy as np | |||
| from fastNLP.core.log import logger | |||
| from .embedding import TokenEmbedding | |||
| from ...core import logger | |||
| from ...core.vocabulary import Vocabulary | |||
| @@ -286,7 +286,7 @@ class StaticEmbedding(TokenEmbedding): | |||
| if word in vocab: | |||
| index = vocab.to_index(word) | |||
| if index in matrix: | |||
| warnings.warn(f"Word has more than one vector in embedding file. Set logger level to " | |||
| logger.warn(f"Word has more than one vector in embedding file. Set logger level to " | |||
| f"DEBUG for detail.") | |||
| logger.debug(f"Word:{word} occurs again in line:{idx}(starts from 0)") | |||
| matrix[index] = torch.from_numpy(np.fromstring(' '.join(nums), sep=' ', dtype=dtype, count=dim)) | |||
| @@ -295,7 +295,7 @@ class StaticEmbedding(TokenEmbedding): | |||
| found_count += 1 | |||
| except Exception as e: | |||
| if error == 'ignore': | |||
| warnings.warn("Error occurred at the {} line.".format(idx)) | |||
| logger.warn("Error occurred at the {} line.".format(idx)) | |||
| else: | |||
| logger.error("Error occurred at the {} line.".format(idx)) | |||
| raise e | |||
| @@ -9,12 +9,12 @@ __all__ = [ | |||
| import logging | |||
| import os | |||
| import warnings | |||
| import numpy as np | |||
| from fastNLP.core.utils.utils import Option | |||
| from fastNLP.core.vocabulary import Vocabulary | |||
| from fastNLP.core.log import logger | |||
| class EmbeddingOption(Option): | |||
| @@ -91,7 +91,7 @@ class EmbedLoader: | |||
| hit_flags[index] = True | |||
| except Exception as e: | |||
| if error == 'ignore': | |||
| warnings.warn("Error occurred at the {} line.".format(idx)) | |||
| logger.warn("Error occurred at the {} line.".format(idx)) | |||
| else: | |||
| logging.error("Error occurred at the {} line.".format(idx)) | |||
| raise e | |||
| @@ -156,7 +156,7 @@ class EmbedLoader: | |||
| found_pad = True | |||
| except Exception as e: | |||
| if error == 'ignore': | |||
| warnings.warn("Error occurred at the {} line.".format(idx)) | |||
| logger.warn("Error occurred at the {} line.".format(idx)) | |||
| pass | |||
| else: | |||
| logging.error("Error occurred at the {} line.".format(idx)) | |||
| @@ -25,11 +25,10 @@ import os | |||
| import random | |||
| import shutil | |||
| import time | |||
| import warnings | |||
| from .loader import Loader | |||
| from fastNLP.core.dataset import Instance, DataSet | |||
| from ...core import logger | |||
| from fastNLP.core.log import logger | |||
| # from ...core._logger import log | |||
| @@ -346,7 +345,7 @@ class SST2Loader(Loader): | |||
| with open(path, 'r', encoding='utf-8') as f: | |||
| f.readline() # 跳过header | |||
| if 'test' in os.path.split(path)[1]: | |||
| warnings.warn("SST2's test file has no target.") | |||
| logger.warn("SST2's test file has no target.") | |||
| for line in f: | |||
| line = line.strip() | |||
| if line: | |||
| @@ -12,7 +12,6 @@ __all__ = [ | |||
| ] | |||
| import os | |||
| import warnings | |||
| from typing import Union, Dict | |||
| from .csv import CSVLoader | |||
| @@ -22,6 +21,7 @@ from fastNLP.io.data_bundle import DataBundle | |||
| from ..utils import check_loader_paths | |||
| # from ...core.const import Const | |||
| from fastNLP.core.dataset import DataSet, Instance | |||
| from fastNLP.core.log import logger | |||
| class MNLILoader(Loader): | |||
| @@ -55,7 +55,7 @@ class MNLILoader(Loader): | |||
| with open(path, 'r', encoding='utf-8') as f: | |||
| f.readline() # 跳过header | |||
| if path.endswith("test_matched.tsv") or path.endswith('test_mismatched.tsv'): | |||
| warnings.warn("MNLI's test file has no target.") | |||
| logger.warn("MNLI's test file has no target.") | |||
| for line in f: | |||
| line = line.strip() | |||
| if line: | |||
| @@ -227,7 +227,7 @@ class QNLILoader(JsonLoader): | |||
| with open(path, 'r', encoding='utf-8') as f: | |||
| f.readline() # 跳过header | |||
| if path.endswith("test.tsv"): | |||
| warnings.warn("QNLI's test file has no target.") | |||
| logger.warn("QNLI's test file has no target.") | |||
| for line in f: | |||
| line = line.strip() | |||
| if line: | |||
| @@ -289,7 +289,7 @@ class RTELoader(Loader): | |||
| with open(path, 'r', encoding='utf-8') as f: | |||
| f.readline() # 跳过header | |||
| if path.endswith("test.tsv"): | |||
| warnings.warn("RTE's test file has no target.") | |||
| logger.warn("RTE's test file has no target.") | |||
| for line in f: | |||
| line = line.strip() | |||
| if line: | |||
| @@ -16,7 +16,6 @@ __all__ = [ | |||
| ] | |||
| import re | |||
| import warnings | |||
| try: | |||
| from nltk import Tree | |||
| @@ -33,6 +32,7 @@ from ..loader.classification import IMDBLoader, YelpFullLoader, SSTLoader, SST2L | |||
| # from ...core._logger import log | |||
| # from ...core.const import Const | |||
| from fastNLP.core.dataset import DataSet, Instance | |||
| from fastNLP.core.log import logger | |||
| class CLSBasePipe(Pipe): | |||
| @@ -24,8 +24,7 @@ __all__ = [ | |||
| "MachingTruncatePipe", | |||
| ] | |||
| import warnings | |||
| from fastNLP.core.log import logger | |||
| from .pipe import Pipe | |||
| from .utils import get_tokenizer | |||
| from ..data_bundle import DataBundle | |||
| @@ -147,7 +146,7 @@ class MatchingBertPipe(Pipe): | |||
| warn_msg = f"There are {len(target_vocab._no_create_word)} target labels" \ | |||
| f" in {[name for name in data_bundle.datasets.keys() if 'train' not in name]} " \ | |||
| f"data set but not in train data set!." | |||
| warnings.warn(warn_msg) | |||
| logger.warn(warn_msg) | |||
| print(warn_msg) | |||
| has_target_datasets = [dataset for name, dataset in data_bundle.datasets.items() if | |||
| @@ -296,7 +295,7 @@ class MatchingPipe(Pipe): | |||
| warn_msg = f"There are {len(target_vocab._no_create_word)} target labels" \ | |||
| f" in {[name for name in data_bundle.datasets.keys() if 'train' not in name]} " \ | |||
| f"data set but not in train data set!." | |||
| warnings.warn(warn_msg) | |||
| logger.warn(warn_msg) | |||
| print(warn_msg) | |||
| has_target_datasets = [dataset for name, dataset in data_bundle.datasets.items() if | |||
| @@ -7,11 +7,11 @@ __all__ = [ | |||
| ] | |||
| from typing import List | |||
| import warnings | |||
| # from ...core.const import Const | |||
| from ...core.vocabulary import Vocabulary | |||
| # from ...core._logger import log | |||
| from fastNLP.core.log import logger | |||
| from pkg_resources import parse_version | |||
| @@ -138,7 +138,7 @@ def _indexize(data_bundle, input_field_names='words', target_field_names='target | |||
| f" in {[name for name in data_bundle.datasets.keys() if 'train' not in name]} " \ | |||
| f"data set but not in train data set!.\n" \ | |||
| f"These label(s) are {tgt_vocab._no_create_word}" | |||
| warnings.warn(warn_msg) | |||
| logger.warn(warn_msg) | |||
| # log.warning(warn_msg) | |||
| tgt_vocab.index_dataset(*[ds for ds in data_bundle.datasets.values() if ds.has_field(target_field_name)], field_name=target_field_name) | |||
| data_bundle.set_vocab(tgt_vocab, target_field_name) | |||
| @@ -1,4 +1,3 @@ | |||
| import warnings | |||
| from typing import Any, Optional, Union | |||
| import numpy as np | |||
| @@ -113,7 +112,7 @@ def _jittor2torch(jittor_var: 'jittor.Var', device: Optional[Union[str, int]] = | |||
| # 如果outputs有_grad键,可以实现求导 | |||
| no_gradient = not jittor_var.requires_grad if no_gradient is None else no_gradient | |||
| if no_gradient == False: | |||
| warnings.warn("The result tensor will not keep gradients due to differences between jittor and pytorch.") | |||
| logger.warn("The result tensor will not keep gradients due to differences between jittor and pytorch.") | |||
| jittor_numpy = jittor_var.numpy() | |||
| if not np.issubdtype(jittor_numpy.dtype, np.inexact): | |||
| no_gradient = True | |||
| @@ -14,7 +14,6 @@ | |||
| # limitations under the License. | |||
| """ Auto Model class. """ | |||
| import warnings | |||
| from collections import OrderedDict | |||
| from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update | |||
| @@ -307,7 +306,7 @@ AutoModelForSpeechSeq2Seq = auto_class_update( | |||
| class AutoModelWithLMHead(_AutoModelWithLMHead): | |||
| @classmethod | |||
| def from_config(cls, config): | |||
| warnings.warn( | |||
| logger.warn( | |||
| "The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use " | |||
| "`AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and " | |||
| "`AutoModelForSeq2SeqLM` for encoder-decoder models.", | |||
| @@ -317,7 +316,7 @@ class AutoModelWithLMHead(_AutoModelWithLMHead): | |||
| @classmethod | |||
| def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs): | |||
| warnings.warn( | |||
| logger.warn( | |||
| "The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use " | |||
| "`AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and " | |||
| "`AutoModelForSeq2SeqLM` for encoder-decoder models.", | |||
| @@ -10,6 +10,7 @@ if _NEED_IMPORT_TORCH: | |||
| from fastNLP.embeddings.torch import StaticEmbedding | |||
| @pytest.mark.torch | |||
| class TestTransformerSeq2SeqEncoder: | |||
| def test_case(self): | |||
| vocab = Vocabulary().add_word_lst("This is a test .".split()) | |||
| @@ -43,7 +43,7 @@ class DummyState(State): | |||
| super().__init__() | |||
| self.decoder = decoder | |||
| def reorder_state(self, indices: torch.LongTensor): | |||
| def reorder_state(self, indices: "torch.LongTensor"): | |||
| self.decoder.decoder_output = self._reorder_state(self.decoder.decoder_output, indices, dim=0) | |||